Skip to main content
Log in

Investigation of the effects of alumina nanoparticles on spur gear surface roughness and hob tool wear in hobbing process

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Hobbing process is one of the machining methods in manufacturing spur gears. In machining processes, selecting a suitable lubricant is one of the significant factors in enhancing machining productivity and improving the characteristics of manufactured workpieces. This study has used the nanolubricant including alumina nanoparticles dispersed in mineral-based oil 25W-50 in hobbing process. Then, hobbing process using the lubricant including both nanoparticles, and none has been done utilizing with the similar hob tools. Two spur gears with DIN1.7131 material have been manufactured using each of two lubricants. Then, the hob tool wear and surface roughness values of manufactured spur gears were investigated. Comparing the results show that using lubricant including alumina nanoparticles in hobbing process causes an expressive decrease in the hob tool crater and flank wear. Also, arithmetic surface roughness value in spur gears manufactured with nanolubricant has decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khalilpourazary S, Dadvand A, Azdast T, Sadeghi MH (2011) Design and manufacturing of a straight bevel gear in hot precision forging process using finite volume method and CAD/CAE technology. Int J Adv Manuf Technol 56:87–95. doi:10.1007/s00170-011-3159-z

    Article  Google Scholar 

  2. Radzevich SP (2012) Dudley’s handbook of practical gear design and manufacture. CRC, Boca Raton

    Book  Google Scholar 

  3. Xia YQ, Wang L, Wang XB (2007) Application of synthetic lubricants in gear transmission. J Shenyang Univ Technol 29:484–487. doi:10.3969/j.issn.1000-1646.2007.05.002

    Google Scholar 

  4. Bakunin VN, Suslov AY, Kuzmina GN, Parenago OP (2005) Recent achievements in the synthesis and application of inorganic nanoparticles as lubricant components. J Lubr Sci 17:127–145. doi:10.1002/ls.3010170202

    Article  Google Scholar 

  5. De Barros MI, Bouchet J, Raoult I, Le Mogne T, Martin JM, Kasrai M, Yamada Y (2003) Friction reduction by metal sulfides in boundary lubrication studied by XPS and XANES analysis. Wear 254:863–870. doi:10.1016/S0043-1648(03)00237-0

    Article  Google Scholar 

  6. Srikant RR, Rao DN, Subrahmanyam MS, Krishna VP (2009) Applicability of cutting fluids with nanoparticle inclusion as coolants in machining. Proc Instn Mech Engrs, Part J: J Eng Tribol 223:221–225. doi:10.1243/13506501JET463

    Article  Google Scholar 

  7. Nouailhat A (2010) An introduction to nano science and nanotechnology. Wiley, Wiltshire

    Google Scholar 

  8. Prabhu S, Vinayagam BK (2012) AFM investigation in grinding process with nano fluids using Taguchi analysis. Int J Adv Manuf Technol 60:149–160. doi:10.1007/s00170-011-3599-5

    Article  Google Scholar 

  9. Sayuti M, Sarhan AA, Salem S (2013) Development of SiO2 nano lubrication system for better surface quality, more power savings and less oil consumption in hard turning of hardened steel AISI4140. Adv Mater Res 748:56–60. doi:10.4028/www.scientific.net/AMR.748.56

    Article  Google Scholar 

  10. Sayuti M, Sarhan AA, Tanaka T, Hamdi M, Saito Y (2013) Cutting force reduction and surface quality improvement in machining of aerospace duralumin AL-2017-T4 using carbon onion nano lubrication system. Int J Adv Manuf Technol 65:1493–1500. doi:10.1007/s00170-012-4273-2

    Article  Google Scholar 

  11. Eastman JA, Choi US, Li S, Thompson LJ, Lee S (1997) Enhanced thermal conductivity through the development of nanofluids. Mater Res Soc Symp Proc 457:3–11. doi:10.1557/PROC-457-3

    Article  Google Scholar 

  12. Wang XQ, Mujumdar AS (2007) Heat transfer characteristics of nanofluids: a review. Int J Thermal Sci 46:1–19. doi:10.1016/j.ijthermalsci.2006.06.010, doi: 10.1016%2Fj.ijthermalsci.2006.06.010

    Article  MATH  Google Scholar 

  13. Lee S, Choi SUS, Li S, Eastman JA (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Tran 121:280–289. doi:10.1115/1.2825978

    Article  Google Scholar 

  14. Vasu V, Reddy GPK (2011) Effect of minimum quantity lubrication with Al2O3 nanoparticles on surface roughness, tool wear and temperature dissipation in machining Inconel 600 alloy. Proc Inst Mech Eng N J Nanoeng Nanosys 225:3–16. doi:10.1177/1740349911427520

    Google Scholar 

  15. Kutz M (2002) Handbook of materials selection. Wiley, New York

    Book  Google Scholar 

  16. Rozita Y, Brydson R, Scott AJ (2010) An investigation of commercial gamma-Al2O3 nanoparticles. J Phys Conf Ser 241:1–5. doi:10.1088/1742-6596/241/1/012096

    Article  Google Scholar 

  17. Jiao D, Zheng S, Wang Y, Guan R, Cao B (2011) The tribology properties of alumina/silica composite nanoparticles as lubricant additives. Appl Surf Sci 257:5720–5725. doi:10.1016/j.apsusc.2011.01.084

    Article  Google Scholar 

  18. Rapoport L, Leshchinsky V, Lvovsky M, Lapsker I, Volovik Y, Feldman Y, Popovitz-Biro R, Tenne R (2003) Superior tribological properties of powder materials with solid lubricant nanoparticles. Wear 255:794–800. doi:10.1016/S0043-1648 (03)00285-0

    Article  Google Scholar 

  19. Razavi Hesabi Z, Hafizpour HR, Simchi A (2007) An investigation on the compressibility of aluminum/nano-alumina composite powder prepared by blending and mechanical milling. Mater Sci Eng A 454–455:89–98. doi:10.1016/j.msea.2006.11.129

    Article  Google Scholar 

  20. Zhang LL, Tu JP, Wu HM, Yang YZ (2007) WS2 nano rods prepared by self-transformation process and their tribological properties as additive in base oil. Mater Sci Eng A 454–455:487–491. doi:10.1016/j.msea.2006.11.072

    Article  Google Scholar 

  21. Gerth J, Werner M, Larsson M, Wiklund U (2009) Reproducing wear mechanisms in gear hobbing-evaluation of a single insert milling test. Wear 276:2257–2268. doi:10.1016/j.wear.2009.04.004, doi: 10.1016/j.wear.2009.04.004#, link to the full text in the original publication. Subscription is usually required for access

    Article  Google Scholar 

  22. Bouzakis KD, Kombogiannis S, Antoniadis A, Vidakis N (2001) Gear hobbing cutting process simulation and tool wear prediction models. J Manuf Sci Eng 124:42–51. doi:10.1115/1.1430236

    Article  Google Scholar 

  23. Diserens M, Patscheider J, Lévyb F (1998) Improving the properties of titanium nitride by incorporation of silicon. Surf Coat Technol 108–109:241–246. doi:10.1016/S0257-8972 (98)00560-X

    Article  Google Scholar 

  24. Claudin C, Rech J (2009) Development of a new rapid characterization method of hob’s wear resistance in gear manufacturing-application to the evaluation of various cutting edge preparations in high speed dry gear hobbing. J Mater Process Technol 209:5152–5160. doi:10.1016/j.jmatprotec.2009.02.014

    Article  Google Scholar 

  25. Yu W, Choi SUS (2004) The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Hamilton–Crosser model. J Nanopart Res 6:355–361. doi:10.1007/s11051-004-2601-7

    Article  Google Scholar 

  26. Gerth J, Larsson M, Wiklund U, Riddar F, Hogmark S (2009) On the wear of PVD-coated HSS hobs in dry gear cutting. Wear 266:444–452. doi:10.1016/j.wear.2008.04.014, doi: 10.1016/j.wear.2008.04.014#, link to the full text in the original publication. Subscription is usually required for access

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Khalilpourazary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khalilpourazary, S., Meshkat, S.S. Investigation of the effects of alumina nanoparticles on spur gear surface roughness and hob tool wear in hobbing process. Int J Adv Manuf Technol 71, 1599–1610 (2014). https://doi.org/10.1007/s00170-013-5591-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-013-5591-8

Keywords

Navigation