Skip to main content
Log in

Physical, chemical, and surface charge properties of bauxite residue derived from a combined process

赤泥的物理、化学和表面电荷特性研究

  • Article
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

A detailed understanding of the composition, buffering capacity, surface charge property, and metals leaching behavior of bauxite residue is the key to improved management, both in reducing the environmental impact and using the material as an industrial by-product for other applications. In this study, physical, chemical, and surface charge properties of bauxite residue derived from a combined process were investigated. Results indicated that the main alkaline solids in bauxite residue were katoite, sodalite, and calcite. These minerals also lead to a higher acid neutralizing capacity of bauxite residue. Acid neutralizing capacity (ANC) to pH 7.0 of this residue is about 0.9 mol H+/kg solid. Meanwhile, the Fe-, Al-, and Si-containing minerals in bauxite residue resulted in an active surface; The isoelectric point (IEP) and point of zero charge (PZC) were 7.88 and 7.65, respectively. This also leads to a fact that most of the metals in bauxite residue were adsorbed by these surface charged solids, which makes the metals not readily move under natural or even moderately acidic conditions. The leaching behavior of metals as a function of pH indicated that the metals in bauxite residue present low release concentrations (pH > 3).

摘要

对赤泥组成、缓冲能力、表面电荷性质以及金属浸出行为的深入理解是促进赤泥管理的关键, 既可以减少其对环境的影响,也可以将其作为工业副产品进行资源化利用。本文采用联合法处理赤泥, 对赤泥的理化性质和表面电荷特性进行研究。结果表明,造成赤泥碱性的固体主要是加藤石、方钠石 和方解石;到pH 7.0 时,赤泥酸中和能力约为0.9 mol H+/kg;同时,赤泥含铁、铝和硅的矿物质使赤 泥具有活性表面,赤泥的等电点和电荷零点分别为7.88 和7.65。这也导致赤泥中的大多数金属被这个 表面带电荷的固体所吸附,也导致金属在自然条件下,或者温和的酸性条件下较为稳定。在不同pH 体系金属的浸出特性研究结果表明赤泥中大多数金属的释放浓度较低(pH>3)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. POWER G, GRAFE M, KLAUBER C. Bauxite residue issues: I. Current management, disposal and storage practices [J]. Hydrometallurgy, 2011, 108(1, 2): 33–45.

    Google Scholar 

  2. SCHMALENBERGER A, O'SULLIVAN O, GAHAN J, COTTER P D, COURTNEY R. Bacterial communities established in bauxite residues with different restoration histories [J]. Environmental Science & Technology, 2013, 47(13): 7110–7119.

    Article  Google Scholar 

  3. REN J, CHEN J, HAN L, WANG M, YANG B, DU P, LI F S. Spatial distribution of heavy metals, salinity and alkalinity in soils around bauxite residue disposal area [J]. Science of the Total Environment, 2018, 628–629: 1200–1208.

    Article  Google Scholar 

  4. BURKE I T, MAYES W M, PEACOCK C L, BROWN A P, JARVIS A P, GRUIZ K. Speciation of arsenic, chromium, and vanadium in red mud samples from the Ajka spill site, Hungary [J]. Environmental Science & Technology, 2012, 46(6): 3085–3092.

    Article  Google Scholar 

  5. XUE S G, WU Y J, LI Y W. Industrial wastes applications for alkalinity regulation in bauxite residue: A comprehensive review [J]. Journal of Central South University, 2019, 26(2): 268–288.

    Article  Google Scholar 

  6. LIAO J X, JIANG J, XUE S G, QING Y C, WU H, MANIKANDAN R, HARTLFY W, HUANG L B. A novel acid-producing fungus isolated from bauxite residue: The potential to reduce the alkalinity [J]. Geomicrobiology Journal, 2018, 35(10): 840–847.

    Article  Google Scholar 

  7. GRAFE M, POWER G, KLAUBER C. Bauxite residue issues: III. Alkalinity and associated chemistry [J]. Hydrometallurgy, 2011, 108(1, 2): 60–79.

    Google Scholar 

  8. LIU W C, CHEN X Q, LI W X, YU Y F, YANG K. Environmental assessment, management and utilization of red mud in China [J]. Journal of Cleaner Production, 2014, 84: 606–610.

    Article  Google Scholar 

  9. XUE S G, ZHU F, KONG X F, WU C, HUANG L, HUANG N, HARTLFY W. A review of the characterization and revegetation of bauxite residues (Red mud) [J]. Environmental Science and Pollution Research, 2016, 23(2): 1120–1132.

    Article  Google Scholar 

  10. XUE S G, KONG X F, ZHU F, et al. Proposal for management and alkalinity transformation of bauxite residue in China [J]. Environmental Science and Pollution Research, 2016, 23(13): 12822–12834.

    Article  Google Scholar 

  11. HUA Y, HEAL K V, FRIESL-HANL W. The use of red mud as an immobiliser for metal/metalloid-contaminated soil: A review [J]. Journal of Hazardous Materials, 2017, 325: 17–30.

    Article  Google Scholar 

  12. LIANG Z, PENG X, LUAN Z, LI W H, ZHAO Y. Reduction of phosphorus release from high phosphorus soil by red mud [J]. Environmental Earth Sciences, 2011, 65(3): 581–588.

    Article  Google Scholar 

  13. SANTINI T C, MALCOLM L I, TYSON G W, WARREN L. pH and organic carbon dose rates control microbially driven bioremediation efficacy in alkaline bauxite residue [J]. Environmental Science & Technology, 2016, 50(20): 11164–11173.

    Article  Google Scholar 

  14. ZHU F, LIAO J X, XUE S G, HARTLEY W, ZOU Q, WU H. Evaluation of aggregate microstructures following natural regeneration in bauxite residue as characterized by synchrotron-based X-ray micro-computed tomography [J]. Science of the Total Environment, 2016, 573: 155–163.

    Article  Google Scholar 

  15. XUE S G, LI M, JIANG J, MILLAR G J, LI C X, KONG X F. Phosphogypsum stabilization of bauxite residue: Conversion of its alkaline characteristics [J]. Journal of Environmental Sciences, 2019, 77: 1–10. DOI: https://doi.org/10.1016/j.jes.2018. 05.016.

    Article  Google Scholar 

  16. ZHU F, HOU J T, XUE S G, WU C, WANG Q L, HARTLEY W. Vermicompost and gypsum amendments improve aggregate formation in bauxite residue [J]. Land Degradation & Development, 2017, 28(7): 2109–2120.

    Article  Google Scholar 

  17. ZHU F, CHENG Q Y, XUE S G, LI C X, HARTLEY W, WU C, TIAN T. Influence of natural regeneration on fractal features of residue microaggregates in bauxite residue disposal areas [J]. Land Degradation & Development, 2018, 29(1): 138–149.

    Article  Google Scholar 

  18. LI X F, YE Y Z, XUE S G, JIANG J, WU C, KONG X F, HARTLEY W, LI Y W. Leaching optimization and dissolution behavior of alkaline anions in bauxite residue [J]. Transactions of Nonferrous Metals Society of China, 2018, 28(6): 1248–1255.

    Article  Google Scholar 

  19. FREIRE T S, CLARK M W, COMARMOND M J, PAYNE T E, REICHELT-BRUSHETI A J, THOROGOD G J. Electroacoustic isoelectric point determinations of bauxite refinery residues: different neutralization techniques and minor mineral effects [J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2012, 28(32): 11802–11811.

    Article  Google Scholar 

  20. SLOOT H A V D. Harmonisation of leaching L extraction procedures for sludge, compost, soil and sediment analyses [M]//QUEVAUVILLER P. Methodologies for soil and sediment fractionation studies. The Royal Society of Chemistry, 2002: 142–174.

    Google Scholar 

  21. REN J, LIU J D, CHEN J, LIU X L, LI F S, DU P. Effect of ferrous sulfate and nitrohumic acid neutralization on the leaching of metals from a combined bauxite residue [J]. Environmental Science and Pollution Research, 2017, 24(10): 9325–9336.

    Article  Google Scholar 

  22. RUBINOS D A, BARRAL M T. Fractionation and mobility of metals in bauxite red mud [J]. Environmental Science and Pollution Research, 2013, 20(11): 7787–7802.

    Article  Google Scholar 

  23. KHAITAN S. In-situ neutralization of stored bauxite residue [D]. Kansas State University, 2006.

    Google Scholar 

  24. FULLER R D, NELSON E D P, RICHARDSON C J. Reclamation of red mud (bauxite residues) using alkaline-tolerant grasses with organic amendments [J]. Journal of Environmental Quality, 1982, 11(3): 533–539.

    Article  Google Scholar 

  25. KONG X F, LI M, XUE S G, HARTLEY W, CHEN C G, WU C, LI X F, LI Y W. Acid transformation of bauxite residue: Conversion of its alkaline characteristics [J]. Journal of Hazardous Materials, 2017, 324: 382–390.

    Article  Google Scholar 

  26. KHAITAN S, DZOMBAK, D A, LOWRY, G V. Chemistry of the acid neutralization capacity of bauxite residue [J]. Environmental Engineering Science, 2009, 26(5): 873–881.

    Article  Google Scholar 

  27. KONG X F, GUO Y, XUE S G, HARTLFY W, WU C, YE Y Z, CHENG Q Y. Natural evolution of alkaline characteristics in bauxite residue [J]. Journal of Cleaner Production, 2017, 143: 224–230.

    Article  Google Scholar 

  28. LIU Y, NAIDU R, MING H. Surface electrochemical properties of red mud (bauxite residue): Zeta potential and surface charge density [J]. Journal of Colloid and Interface Science, 2013, 394: 451–457.

    Article  Google Scholar 

  29. XUE S G, YE Y Z, ZHU F, WANG W L, JIANG J, HARTLEY W. Changes in distribution and microstructure of bauxite residue aggregates following amendments addition [J]. Journal of Environmental Sciences, 2019, 78: 276–286 DOI: https://doi.org/10.1016/j.jes.2018.10.010.

    Article  Google Scholar 

  30. PARK K, STUMM W. [CHAIRMAN], GOULD R F. Equilibrium concepts in natural water systems [J]. Limnology & Oceanography, 1967, 12(4): 726–727.

    Article  Google Scholar 

  31. SANTINI T C, PENG Y G. Microbial fermentation of organic carbon substrates drives rapid pH neutralization and element removal in bauxite residue leachate [J]. Environmental Science & Technology, 2017, 51(21): 12592–125601.

    Article  Google Scholar 

  32. LI Y W, JIANG J, XUE S G, MILLAR G J, KONG X F, LI X F, LI M, LI C X. Effect of ammonium chloride on leaching behavior of alkaline anion and sodium ion in bauxite residue [J]. Transactions of Nonferrous Metals Society of China, 2018, 28(10): 2125–2134.

    Article  Google Scholar 

  33. KOSMULSKI M. Compilation of PZC and IEP of sparingly soluble metal oxides and hydroxides from literature [J]. Advances in Colloid and Interface Science, 2009, 152(1, 2): 14–25.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Du  (杜平).

Additional information

Foundation item: Projects(41501350, 41461071, 31860170) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, J., Chen, J., Guo, W. et al. Physical, chemical, and surface charge properties of bauxite residue derived from a combined process. J. Cent. South Univ. 26, 373–382 (2019). https://doi.org/10.1007/s11771-019-4009-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4009-7

Key words

关键词

Navigation