Skip to main content
Log in

Improvement of alkaline electrochemical characteristics of bauxite residue amendment with organic acid and gypsum

有机酸-石膏联合作用改善赤泥碱性电化学性能

  • Article
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Neutralization of alkaline properties of bauxite residue (BR) by using organic acid and gypsum additions may effectively improve electrochemical properties and alleviate physicochemical barriers to ecological rehabilitation. Mineral acids, citric acid and hybrid acid–gypsum additions were compared for their potential to transform and improve zeta potential, isoelectric point (IEP), surface protonation and active alkaline —OH groups, which are critical factors for further improvement of physicochemical and biological properties later. Isoelectric points of untransformed bauxite residue and six transformed derivatives were determined by using electroacoustic methods. Electrochemical characteristics were significantly improved by the amendments used, resulting in reduced IEP and —OH groups and decreased surface protonation for transformed residues. XRD results revealed that the primary alkaline minerals of cancrinite, calcite and grossular were transformed by the treatments. The treatments of citric acid and gypsum promoted the dissolution of cancrinite. From the SEM examination, citric acid and gypsum treatments contributed to the reduction in IEP and redistribution of —OH groups on particle surfaces. The collective evidence suggested that citric acid and gypsum amendments may be used firstly to rapidly amend bauxite residues for alleviating the caustic conditions prior to the consideration of soil formation in bauxite residue.

摘要

本文开展了有机酸-石膏联合转化赤泥碱性电化学性能的研究,探究了有机酸-石膏作用过程中 zeta 电位、等电点、矿物表面质子化、表面碱性官能团—OH 的转变及其对赤泥堆场生态修复相关理 化性质的影响。为了更好地评价有机酸的转化效果,利用无机酸(盐酸、硫酸)进行对比分析。采用 有机酸-石膏中和赤泥的碱性,可有效改善赤泥的碱性电化学性能,处理后的赤泥等电点和矿物表面 质子化程度显著降低,矿物颗粒表面碱性官能团—OH 的含量也明显减少。XRD 结果揭示有机酸、无 机酸、酸-石膏联合转化了赤泥中主要的碱性物相钙霞石、方解石、钙铝榴石,但有机酸-石膏联合作 用进一步促进了钙霞石的溶解。从SEM 图可以看出,有机酸-石膏联合作用改善了赤泥颗粒的分布, 也有利于等电点的降低及矿物颗粒表面碱性官能团—OH 的重新分布。有机酸-石膏联合调控赤泥碱性 的效果非常显著,可进一步促进碱性的转化,对实现堆场赤泥的土壤化具有重要的作用。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. KONG Xiang-feng, LI Meng, XUE Sheng-guo, HARTLEY William, CHEN Cheng, WU Chuan, LI Xiao-fei, LI Yi-wei. Acid transformation of bauxite residue: Conversion of its alkaline characteristics [J]. Journal of Hazardous Materials, 2017, 324(B): 382–390. DOI: 10.1016/j. jhazmat.2016.10.073.

    Google Scholar 

  2. LI Yi-wei, JIANG Jun, XUE Sheng-guo, MILLAR G, KONG Xiang-feng, LI Xiao-fei, LI Meng, LI Chu. Effect of ammonium chloride on leaching behavior of alkaline anion and sodium ion in bauxite residue [J]. Transactions of Nonferrous Metals Society of China, 2018, 28(10): 2125–2134. DOI: 10.1016/S1003-6326(18)64857-5.

    Article  Google Scholar 

  3. LI Xiao-fei, YE Yu, XUE Sheng-guo, JIANG Jun, WU Chuan, KONG Xiang-feng, HARTLEY W, LI Yi-wei. Leaching optimization and dissolution behavior of alkaline anions in bauxite residue [J]. Transactions of Nonferrous Metals Society of China, 2018, 28(6): 1248–1255. DOI: 10.1016/S1003-6326(18)64763-6.

    Article  Google Scholar 

  4. SMART D, CALLERY S, COURTNEY R. The potential for waste-derived materials to form soil covers for the restoration of mine tailings in Ireland [J]. Land Degradation & Development, 2016, 27(3): 542–549. DOI: 10.1002/ldr.2465.

    Article  Google Scholar 

  5. KONG Xiang-feng, GUO Ying, XUE Sheng-guo, HARTLEY W, WU Chuan, YE Yu, CHENG Qing. Natural evolution of alkaline characteristics in bauxite residue [J]. Journal of Cleaner Production, 2017, 143: 224–230. DOI: 10.1016/j.jclepro.2016.12.125.

    Article  Google Scholar 

  6. KONG Xiang-feng, JIANG Xing-xing, XUE Sheng-guo, HUANG Ling, HARTLEY W, WU Chuan, LI Xiao-bin. Migration and distribution of saline ions in bauxite residue during water leaching [J]. Transactions of Nonferrous Metals Society of China, 2018, 28(3): 534–541. DOI: 10.1016/S1003-6326(18)64686-2.

    Article  Google Scholar 

  7. XUE Sheng-guo, YE Yu, ZHU Feng, WANG Qiong, JIANG Jun, HARTLEY W. Changes in distribution and microstructure of bauxite residue aggregates following amendments addition [J]. Journal of Environmental Sciences, 2019, 78: 276–286. DOI: 10.1016/j.jes.2018.10.010.

    Article  Google Scholar 

  8. PONTIKES Y. Bauxite residue valorization and best practices: Preface for the thematic section and some of the work to follow [J]. Journal of Sustainable Metallurgy, 2016, 2(4): 313–315. DOI: 10.1007/s40831-016-0104-2.

    Article  Google Scholar 

  9. XUE Sheng-guo, KONG Xiang-feng, ZHU Feng, HARTLEY W, LI Xiao-fei, LI Yi-wei. Proposal for management and alkalinity transformation of bauxite residue in China [J]. Environmental Science and Pollution Research, 2016, 23(13): 12822–12834. DOI: 10.1007/s11356-016-6478–7.

    Article  Google Scholar 

  10. ZHU Feng, HOU Jing, XUE Sheng-guo, WU Chuan, WANG Qiong, HARTLEY W. Vermicompost and gypsum amendments improve aggregate formation in bauxite residue [J]. Land Degradation & Development, 2017, 28: 2109–2120. DOI: 10.1002/ldr.2737.

    Article  Google Scholar 

  11. ZHU Feng, CHENG Qing, XUE Sheng-guo, LI Chu-xuan, HARTLEY W, WU Chuan. TIAN Tao. Influence of natural regeneration on fractal features of residue microaggregates in bauxite residue disposal areas [J]. Land Degradation and Development, 2018, 29(1): 138–149. DOI: 10.1002/ldr.2848.

    Article  Google Scholar 

  12. KINNARINEN T, HOLLIDAY L, HÄKKINEN A. Dissolution of sodium, aluminum and caustic compounds from bauxite residues [J]. Minerals Engineering, 2015, 79: 143–151. DOI: /10.1016/j.mineng.2015.06.007.

    Article  Google Scholar 

  13. CHVEDOV D, OSTAP S, LE T. Surface properties of red mud particles from potentiometric titration [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 182(1): 131–141. DOI: 10.1016/S0927-7757(00)00814-1.

    Article  Google Scholar 

  14. SAMAL S, RAY A K, BANDOPADHYAY A. Characterization and microstructure observation of sintered red mud-fly ash mixtures at various elevated temperature [J]. Journal of Cleaner Production, 2015, 101: 368–376. DOI: 10.1016/j.jclepro.2015.04.010.

    Article  Google Scholar 

  15. RENFORTH P, MAYES W M, JARVIS A P, BURKE I T, MANNING D A C, GRUIZ K. Contaminant mobility and carbon sequestration downstream of the Ajka (Hungary) red mud spill: The effects of gypsum dosing [J]. Science of the Total Environment, 2012, 421–422(3): 253–259. DOI: 10.1016/j.scitotenv.2012.01.046.

    Google Scholar 

  16. SANTINI T C, KERR J L, WARREN L A. Microbiallydriven strategies for bioremediation of bauxite residue [J]. Journal of Hazardous Materials, 2015, 293: 131–157. DOI: 10.1016/j.jhazmat.2015.03.024.

    Article  Google Scholar 

  17. COURTNEY R, HARRIS J A, PAWLETT M. Microbial community composition in a rehabilitated bauxite residue disposal area: A case study for improving microbial community composition [J]. Restoration Ecology, 2014, 22(6): 798–805. DOI: 10.1111/rec.12143.

    Article  Google Scholar 

  18. YE Jie, CONG Xiang, ZHANG Pan, HOFFMANN E, ZENG Guang, LIU Yang, FANG Wei, WU Yan, ZHANG Hai. Interaction between phosphate and acid-activated neutralized red mud during adsorption process [J]. Applied Surface Science, 2015, 356(8): 128–134. DOI: 10.1016/j.apsusc.2015.08.053.

    Article  Google Scholar 

  19. LIANG Wen, COUPERTHWAITE S J, KAUR G, YAN Cheng, JOHNSTONE D W, MILLAR G J. Effect of strong acids on red mud structural and fluoride adsorption properties [J]. Journal of Colloid and Interface Science, 2014, 423(3): 158–165. DOI: 10.1016/j.jcis.2014.02.019.

    Article  Google Scholar 

  20. COUPERTHWAITE S J, HAN Su, SANTINI T, KAUR G, JOHNSTONE D W, MILLAR G J, FROST R L. Bauxite residue neutralisation precipitate stability in acidic environments [J]. Environmental Chemistry, 2013, 10(6): 455–464. DOI: 10.1071/EN13048.

    Article  Google Scholar 

  21. XUE Sheng-guo, WU Yu, LI Yi-wei, KONG Xiang-feng, ZHU Feng, HARTLEY W, LI Xiao-fei, YE Yu. Industrial wastes applications for alkalinity regulation in bauxite residue: A comprehensive review [J]. Journal of Central South University, 2019, 26(2): 268–288.

    Article  Google Scholar 

  22. DAVIS J A, KENT D B. Surface complexation modeling in aqueous geochemistry [J]. Reviews in Mineralogy, 1990, 23(1): 177–260.

    Google Scholar 

  23. FREIRE T S S, CLARK M W, COMARMOND M J, PAYNE T E, REICHELT-BRUSHETT A J, THOROGOOD G J. Electroacoustic isoelectric point determinations of bauxite refinery residues: Different neutralization techniques and minor mineral effects [J]. Langmuir, 2012, 28(32): 11802–11811. DOI: 10.1021/la301790v.

    Article  Google Scholar 

  24. KOSMULSKI M. The pH dependent surface charging and points of zero charge. VI. Update [J]. Journal of Colloid and Interface Science, 2014, 426(1): 209–212. DOI: 10.1016/j.jcis.2014.02.036.

    Article  Google Scholar 

  25. CLARK M W, HARRISON J J, PAYNE T E. The pH-dependence and reversibility of uranium and thorium binding on a modified bauxite refinery residue using isotopic exchange techniques [J]. Journal of Colloid and Interface Science, 2011, 356(2): 699–705. DOI: 10.1016/j.jcis.2011. 01.068.

    Article  Google Scholar 

  26. WU F C, TSENG R L, JUANG R S. Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics [J]. Chemical Engineering Journal, 2009, 153(1): 1–8. DOI: 10.1016/j.cej.2009.04.042.

    Google Scholar 

  27. ZHU Xiao-bo, LI Wang, GUAN Xue-mao. Kinetics of titanium leaching with citric acid in sulfuric acid from red mud [J]. Transactions of Nonferrous Metals Society of China, 2015, 25(9): 3139–3145. DOI: 10.1016/S1003-6326(15)63944-9.

    Article  Google Scholar 

  28. LI Xiao-fei, HUANG Xiu, QI Tian-gui, ZHOU Qiu-sheng, WANG Yi, PENG Zhi-hong, LIU Gui. Preliminary results on selective surface magnetization and separation of alumina-/silica-bearing minerals [J]. Minerals Engineering, 2015, 81: 135–141. DOI: 10.1016/j.mineng. 2015.08.002.

    Article  Google Scholar 

  29. COURTNEY R, HARRINGTON T, BYRNE K A. Indicators of soil formation in restored bauxite residues [J]. Ecological Engineering, 2013, 58(13): 63–68. DOI: 10.1016/j.ecoleng.2013.06.022.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-guo Xue  (薛生国).

Additional information

Foundation item: Projects(41877511, 41842020) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, Xf., Li, Cx., Jiang, J. et al. Improvement of alkaline electrochemical characteristics of bauxite residue amendment with organic acid and gypsum. J. Cent. South Univ. 26, 430–439 (2019). https://doi.org/10.1007/s11771-019-4015-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4015-9

Key words

关键词

Navigation