Skip to main content
Log in

Dealkalization of Bauxite Residue Through Acid Neutralization and Its Revegetation Potential

  • Bauxite to Aluminum: Advances, Automation, and Alternative Processes
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Bauxite residue is a highly alkaline industrial solid waste generated through the alumina production process. Its high alkalinity causes serious environmental pollution. In this article, a fast, high-efficiency, low-cost dealkalization process was developed. Bauxite residue was dealkalized by sulfuric acid and CAM, a calcium-containing compound. The revegetation potential of dealkali bauxite residue was also studied. The dealkalization rate reached up to 94.31% when 18.4% sulfuric acid was added, and 2% CAM leaching occurred at room temperature for 10–30 min. The filtration speed increased by about 70 times with the addition of CAM up to 4.5%. The subsequent pot experiment showed that the dealkali bauxite residue met the growth requirements of plants. Scanning electron microscopy analysis showed that the particle size of neutralized bauxite residue was enlarged, thereby accelerating the soil formation process of the bauxite residue. This work provides technical support for ecologic restoration of a bauxite residue disposal area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. Wang, H. Guangyan, F. Lyu, T. Yue, H. Tang, H. Han, Y. Yang, R. Liu, and W. Sun, Minerals-basel 9, 281 (2019).

    Article  Google Scholar 

  2. L. Wang, N. Sun, H. Tang, and W. Sun, Minerals-basel 9, 362 (2019).

    Article  Google Scholar 

  3. J. Jin, Y. Tan, R. Liu, J. Zheng, and J. Zhang, J. Mater. Civ. Eng. 31, 2 (2018).

    Google Scholar 

  4. Y. Zhang, L. Wang, W. Sun, Y. Hu, and H. Tang, J. Ind. Eng. Chem. (2019).

  5. A. Agrawal, K.K. Sahu, and B.D. Pandey, Resour. Conserv. Recycl. 42, 99 (2004).

    Article  Google Scholar 

  6. E. Mukiza, L.L. Zhang, X. Liu, and N. Zhang, Resour. Conserv. Recycl. 141, 187 (2019).

    Article  Google Scholar 

  7. F. Lyu, J.D. Gao, N. Sun, R.Q. Liu, X.D. Sun, X.F. Cao, L. Wang, and W. Sun, Miner. Eng. 131, 66 (2019).

    Article  Google Scholar 

  8. J. Carneiro, D.M. Tobaldi, W. Hajjaji, M.N. Capela, R.M. Novais, M.P. Seabra, and J.A. Labrincha, Ceram. Int. 44, 4211 (2018).

    Article  Google Scholar 

  9. X. Chen, Y. Guo, S. Ding, H. Zhang, F. Xia, J. Wang, and M. Zhou, J. Clean. Prod. 207, 789 (2019).

    Article  Google Scholar 

  10. Y. Wang, T. Zhang, G. Lyu, F. Guo, W. Zhang, and Y. Zhang, J. Clean. Prod. 188, 456 (2018).

    Article  Google Scholar 

  11. R.K. Paramguru, P.C. Rath, and V.N. Misra, Miner. Proc. Extr. Metall. Rev. 26, 1 (2004).

    Article  Google Scholar 

  12. X. Liu and N. Zhang, Waste Manag. Res. 29, 1053 (2011).

    Article  Google Scholar 

  13. D.Y. Liu and W. Chuan-Sheng, Materials-basel 5, 1232 (2012).

    Article  Google Scholar 

  14. J.W.C. Wong and G.E. Ho, Waste Manag. Res. 11, 249 (1993).

    Article  Google Scholar 

  15. S. Xue, F. Zhu, X. Kong, C. Wu, L. Huang, N. Huang, and W. Hartley, Environ. Sci. Pollut. Res. 23, 1120 (2016).

    Article  Google Scholar 

  16. M.A. Khairul, J. Zanganeh, and B. Moghtaderi, Resour. Conserv. Recycl. 141, 483 (2019).

    Article  Google Scholar 

  17. Y. Kim, Y. Lee, M. Kim, and H. Park, J. Clean. Prod. 207, 490 (2019).

    Article  Google Scholar 

  18. M. Singh, S.N. Upadhayay, and P.M. Prasad, Cem. Concr. Res. 27, 1037 (1997).

    Article  Google Scholar 

  19. I.M. Nikbin, M. Aliaghazadeh, S. Charkhtab, and A. Fathollahpour, J. Clean. Prod. 172, 2683 (2016).

    Article  Google Scholar 

  20. V.M. Sglavo, S. Maurina, A. Conci, A. Salviati, G. Carturan, and G. Cocco, J. Eur. Ceram. Soc. 20, 245 (2000).

    Article  Google Scholar 

  21. I.D. Pulford, J.S.J. Hargreaves, J. Ďurišová, B. Kramulova, C. Girard, M. Balakrishnan, V.S. Batra, and J.L. Rico, J. Environ. Manag. 100, 59 (2012).

    Article  Google Scholar 

  22. D.V. Ribeiro, J.A. Labrincha, and M.R. Morelli, Mater. Res. 14, 60 (2011).

    Article  Google Scholar 

  23. M. Urík, M. Bujdoš, B. Milová-Žiaková, P. Mikušová, M. Slovák, and P. Matúš, J. Inorg. Biochem. 152, 154 (2015).

    Article  Google Scholar 

  24. X. Zhu, L.I. Wang, and X.M. Guan, Trans. Nonferrous Met. Soc. 25, 3139 (2015).

    Article  Google Scholar 

  25. S. Wang, H.M. Ang, and M.O. Tade, Chemosphere 72, 1621 (2008).

    Article  Google Scholar 

  26. B. Xue, B. Wei, L. Ruan, F. Li, Y. Jiang, W. Tian, B. Su, and L. Zhou, Hydrometallurgy 186, 91 (2019).

    Article  Google Scholar 

  27. K. Zhou, C. Teng, X. Zhang, C. Peng, and W. Chen, Hydrometallurgy 182, 57 (2018).

    Article  Google Scholar 

  28. P.J. Joyce, T. Hertel, A. Goronovski, A.H. Tkaczyk, Y. Pontikes, and A. Björklund, Resour. Conserv. Recycl. 138, 87 (2018).

    Article  Google Scholar 

  29. S.P. Kang and S.J. Kwon, Constr. Build. Mater. 133, 459 (2017).

    Article  Google Scholar 

  30. W.W. Zhang, C. Wang, R. Xue, and L. Wang, J. Integr. Agric. 18, 1360 (2019).

    Article  Google Scholar 

  31. Z. Liu, H. Li, M. Huang, D. Jia, and N. Zhang, Hydrometallurgy 167, 92 (2017).

    Article  Google Scholar 

  32. L. Wang, N. Sun, Z. Wang, H. Han, Y. Yang, R. Liu, Y. Hu, H. Tang, and W. Sun, J. Mol. Liq. 276, 867 (2019).

    Article  Google Scholar 

  33. R.M. Rivera, B. Ulenaers, G. Ounoughene, K. Binnemans, and T. Van Gerven, Miner. Eng. 119, 82 (2018).

    Article  Google Scholar 

  34. G. Power, M. Gräfe, and C. Klauber, Hydrometallurgy 108, 33 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the National Key Research and Development Program of China (No. 2018YFC1901901), Natural Science Foundation of China (Nos. U1704252, 51704329), Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources (No. 2018TP002), and Collaborative Innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources and Open Foundation of State Key Laboratory of Mineral Processing (No. BGRIMM-KJSKL-2019-18).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Wang or Wei Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 395 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, H., Lyu, F., Hu, G. et al. Dealkalization of Bauxite Residue Through Acid Neutralization and Its Revegetation Potential. JOM 72, 319–325 (2020). https://doi.org/10.1007/s11837-019-03911-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03911-z

Navigation