Skip to main content
Log in

Fractionation and mobility of metals in bauxite red mud

  • Mining and the Environment - Understanding Processes, Assessing Impacts and Developing Remediation
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Red mud (RM) is a strongly alkaline residue generated in enormous amounts worldwide from bauxite refining using the Bayer chemical process. RM is composed mainly of Fe, Ti and Al oxides and hydroxides, but it also contains an array of trace metals and metalloids at different concentrations. The purpose of this paper is to assess the potential mobility of metals in RM, with special emphasis on pH effect. The ‘operational’ distribution and leachability of metals within/from RM was studied by applying a sequential extraction procedure (SEP) and several leaching tests (rapid titration, equilibration acidification, batch leaching with acetic acid and also the toxicity characteristics leaching procedure (TCLP) and the DIN 38414-S4 procedures, used as reference methods) carried out at different pH, solid/liquid ratio, extraction period and type of acid (HCl or acetic acid). Chemical analysis showed that, in addition to the major metals Fe, Al and Ti, RM contains several trace metals, some of them (Cr, Cu and Ni) in concentrations exceeding the regulatory limits. SEP showed that a majority of the metals in the RM (between the 32.2 ± 8.5 for Cd and 95.3 ± 0.4 % for Ni) were found in the residual fraction, suggesting that they are not readily mobile under normal environmental conditions. Leaching tests performed at different pH showed that a significant fraction of the metals is mobilised from RM only under very strong acid conditions (pH < 2), whereas Al is released in considerable amounts at pH < 5.3. Among the trace metals, Cr requires special attention because of its relative high concentration in RM and the higher concentrations of this metal mobilised at low pH. The leaching tests using acetic acid showed that the standard TCLP largely underestimates the release of trace metals from RM, and therefore it is not advisable to evaluate the actual potential leaching of trace metals from this residue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ádám J, Bánvölgyi, G, Dura, G, Grenerczy G, Gubek N, Gutper I.; Simon G, Szegfalvi Z, Székács A, Szépvölgyi J, Ujlaky, E (2011) The Kolontár Report: Causes and lessons from the Red Mud disaster. Greens/European Free Alliance Parliamentary Group in the European Parliament and LMP—politics can be different. Jávor B (ed.). Budapest, 156 p

  • Anton A, Rékási M, Uzinger N, Széplábi G, Makó A (2012) Modelling the potential effects of the Hungarian red mud disaster on soil properties. Water Air Soil Pollut 223:5175–5188

    Article  CAS  Google Scholar 

  • Al-Abed SR, Hageman PL, Jegadeesan G, Madhavan N, Allen D (2006) Comparative evaluation of short-term leach test for heavy metal release from mineral processing waste. Sci Total Environ 364:14–23

    Article  CAS  Google Scholar 

  • Bhatnagar A, Vilar VJP, Botelho CMS, Boaventura RAR (2011) A review of the use of red mud as adsorbent for the removal of toxic pollutants from water and wastewater. Environ Technol 32:231–249

    Article  CAS  Google Scholar 

  • Bradl HB (2005) Heavy metals in the environment. Elsevier, Amsterdam

    Google Scholar 

  • Brunori C, Cremisini C, Massanisso P, Pinto V, Torricelli L (2005) Reuse of a treated red mud bauxite waste: studies on environmental compatibility. J Hazard Mater 117:55–63

    Article  CAS  Google Scholar 

  • Burke IT, Mayes WM, Peacock CL, Brown AP, Jarvis AP, Gruiz K (2012) Speciation of arsenic, chromium, and vanadium in red mud amples from the Ajka spill site, Hungary. Environ Sci Technol 46:3085–3092

    Article  CAS  Google Scholar 

  • Cappuyns V, Van Herreweghe S, Swennen R, Ottenburgs R, Deckers J (2002) Arsenic pollution at the industrial site of Reppel–Bocholt (north Belgium). Sci Total Environ 295:217–240

    Article  CAS  Google Scholar 

  • Castaldi P, Melis P, Silvetti M, Deiana P, Garau G (2009) Influence of pea and wheat growth on Pb, Cd, and Zn mobility and soil biological status in a polluted amended soil. Geoderma 151:241–248

    Article  CAS  Google Scholar 

  • Castaldi P, Silvetti M, Enzo S, Deiana S (2011) X-Ray diffraction and thermal analysis of bauxite ore-processing waste (red mud) exchanged with arsenate and phosphate. Clays Clay Miner 59:189–199

    Article  CAS  Google Scholar 

  • Chao TT (1972) Selective dissolution of manganese oxides from soils and sediments with acidified hydroxylamine hydrochloride. J Soil Sci Soc Am Proc 36:764–768

    Article  Google Scholar 

  • CIEMAT (1996a) specific procedure PR-X2-09. Separación radioquímica y determinación mediante espectrometría alfa de uranio en aguas, suelos, sedimentos y muestras biológicas, CIEMAT, Ministerio de Economía y Competitividad, Madrid

  • CIEMAT (1996b) specific procedure PR-X2-04. Procedimiento para la determinación de Ra-226 y Ra-224 en aguas mediante separación radioquímica. CIEMAT, Ministerio de Economía y Competitividad, Madrid

  • Çoruh S (2008) Immobilization of copper flotation waste using red mud and clinoptilolite. Waste Manag Res 26:409–418

    Article  Google Scholar 

  • Decreto 60/2009, de 26 de febrero sobre suelos potencialmente contaminados y procedimiento para la declaración de suelos contaminados. DOGA 24 de marzo de 2009

  • DIN (Deutsches Institut für Normung e.V) (1984) Deutsche einheitsverfahren zur Wasser-, Abwasser-und Schlammuntersuchung; Schlamm und Sedimente (Gruppe S); Bestimmung der eluierbarkeit mit Wasser (S 4)

  • European Commission (2000) Decision of 3 May 2000 replacing Decision 94/3/EC establishing a list of hazardous waste pursuant to Article 1(4) of Council Directive 91/689/EEC on hazardous waste, European list of waste, 2000/532/EC

  • European Union (2008) Directive 2008/98/EC of the European Parliament and of the council of 19 November 2008 on waste and repealing certain Directives. Official Journal of the European Union 22/11/2008

  • Garau G, Castaldi P, Santona L, Deiana P, Melis P (2007) Influence of red mud, zeolite and lime on heavy metal immobilization, culturable heterotrophic microbial populations and enzyme activities in a contaminated soil. Geoderma 142:47–57

    Article  CAS  Google Scholar 

  • Garau G, Silvetti M, Deiana S, Deiana P, Castaldi P (2011) Long-term influence of red mud on as mobility and soil physico-chemical and microbial parameters in a polluted sub-acidic soil. J Hazard Mater 185:1241–1248

    Article  CAS  Google Scholar 

  • Gelencsér A, Kováts N, Turóczi B, Rostási Á, Hoffer A, Imre K, Nyirő-Kósa I, Csákberényi-Malasics D, Tóth A, Czitrovszky A, Nagy A, Nagy S, Ács A, Kovács A, Ferincz A, Hartyáni Z, Pósfai M (2011) The red mud accident in Ajka (Hungary): characterization and potential health effects of fugitive dust. Environ Sci Technol 45:1608–1615

    Article  Google Scholar 

  • Genç H, Tjell JC, McConchie D, Schuiling O (2003) Adsorption of arsenate from water using neutralized red mud. J Colloid Interface Sci 264:327–334

    Article  Google Scholar 

  • Genç-Fuhrman H, Tjell JC, McConchie D (2004) Increasing the arsenate adsorption capacity of neutralized red mud (Bauxsol). J Colloid Interface Sci 271:313–320

    Article  Google Scholar 

  • Gensemer RW, Playle RC (1999) The bioavailability and toxicity of aluminum in aquatic environments. Crit Rev Environ Sci Technol 29:315–450

    Article  CAS  Google Scholar 

  • Ghosh I, Guha S, Balasubramanian R, Ramesh Kumar AV (2011) Leaching of metals from fresh and sintered red mud. J Hazard Mat 185:662–668

    Article  CAS  Google Scholar 

  • Ghosh A, Mukiibi M, Ela W (2004) TCLP underestimates leaching of arsenic from solid residuals under landfill conditions. Environ Sci Technol 38:4677–4682

    Article  CAS  Google Scholar 

  • Glenister DJ, Thornber MR (1985) Alkalinity of red mud and its application for the management of acid wastes. In: Proceedings of Chemeca ‘85: innovation in the process and resource industry, Perth, August 1985

  • Gräfe M, Landers M, Tappero R, Austin P, Gan B, Grabsch A, Klauber C (2011) Combined application of QEM-SEM and hard X-ray microscopy to determine mineralogical associations and chemical speciation of trace metals. J Environ Qual 40:767–783

    Article  Google Scholar 

  • Gundy S, Farkas G, Székely G, Kásler M (2012) No short-term cytogenetic consequences of Hungarian red mud catastrophe. Mutagenesis. doi:10.1093/mutage/ges042

  • Gupta SK, Chen KY (1975) Partitioning of trace elements in selective fractions of nearshore sediments. Environ Lett 10:129–158

    Article  CAS  Google Scholar 

  • Hind AR, Bhargava SK, Grocott SC (1999) The surface chemistry of Bayer process solids: a review. Colloids Surf A 146:359–374

    Article  CAS  Google Scholar 

  • Jansson ET (2001) Aluminum exposure and Alzheimer’s disease. J Alzheimers Dis 3:541–549

    CAS  Google Scholar 

  • Kaiser K, Zech W (1996) Defects in estimation of aluminum in humus complexes of podzolic soils by pyrophosphate extraction. Soil Sci 161:452–458

    Article  CAS  Google Scholar 

  • Klebercz O, Mayes WM, Anton AD, Feigl V, Jarvis A, Gruiz K (2012) Ecotoxicity of fluvial sediments downstream of the Ajka red mud spill, Hungary. J Environ Monit 14:2063–2071

    Article  CAS  Google Scholar 

  • Klauber C, Gräfe M, Power G (2011) Bauxite residue issues: II. Options for residue utilization. Hydrometallurgy 108:11–32

    Article  CAS  Google Scholar 

  • Kovács T, Sas Z, Somlai J, Jobbágy V, Szeiler G (2012) Radiological investigation of the effects of red mud disaster. Radiat Prot Dosimetry. doi:10.1093/rpd/ncs192

  • Kutle A, Nađ K, Obhođaš J, Oreščanin V, Valković V (2004) Assessment of environmental condition in the waste disposal site of an ex-alumina plant near Obrovac, Croatia. X–Ray Spectrom 33:39–45

    Article  CAS  Google Scholar 

  • La Voz de Galicia (2010) Visita al planeta rojo. Available from http://www.lavozdegalicia.es/sociedad/2010/10/17/0003_8789357.htm. Accessed 17 September 2010

  • Lee SH, Kim EY, Park H, Yun J, Kim JG (2011) In situ stabilization of arsenic and metal-contaminated agricultural soil using industrial by-products. Geoderma 161:1–7

    Article  Google Scholar 

  • Liu Y, Lin C, Wu Y (2007) Characterization of red mud derived from a combined Bayer process and bauxite calcination method. J Hazard Mat 146:255–261

    Article  Google Scholar 

  • Liu Y, Naidu R, Ming H (2011) Red mud as an amendment for pollutants and liquid phases. Geoderma 163:1–12

    Article  CAS  Google Scholar 

  • Lombi E, Zhao FJ, Wieshammer G, Zhang G, McGrath SP (2002) In situ fixation of metals in soils using bauxite residue: biological effects. Environ Pollut 118:445–452

    Article  CAS  Google Scholar 

  • Mayes WM, Jarvis AP, Burke IT, Walton M, Feigl V, Klebercz O, Gruiz K (2011) Dispersal and attenuation of trace contaminants downstream of the Ajka bauxite residue (red mud) depository failure, Hungary. Environ Sci Technol 45:5147–5155

    Article  CAS  Google Scholar 

  • McConchie D, Clark M, McConchie FD, Bellò V, Guerra M, Zijlstra H (2002) From waste to resource: the treatment and reuse of bauxite refinery residues (red mud). In: Proceedings of the 7th International Symposium on Environmental Issues and Waste Management in Energy and Mineral Production (SWEMP 2002), Cagliari, October 2002

  • McGrath SP (1995) Chromium and Nickel. In: Alloway BJ (ed) Heavy metals in soils, 2nd edn. Chapman & Hall, London, pp 152–178

    Chapter  Google Scholar 

  • McKeague JA (1967) An evaluation of 0.1M pyrophosphate and pyrophosphate-dithionite in comparison with oxalate as extractants of accumulation products in podzols and some other soils. Can J Soil Sci 47:95–99

    Article  CAS  Google Scholar 

  • Méndez-Álvarez E, Soto-Otero R, Hermida-Ameijeiras A, López-Real AM, Lavandería-García JL (2001) Effects of aluminum and zinc on the oxidative stress caused by 6-hydroxydopamine autoxidation: relevance for the pathogenesis of Parkinson’s disease. Biochim Biophys Acta 1586:155–168

    Google Scholar 

  • Milačič R, Zuliani T, Ščančar J (2012) Environmental impact of toxic elements in red mud studied by fractionation and speciation procedures. Sci Total Environ 426:359–365

    Article  Google Scholar 

  • Mymrin V, de Araújo PH, Ferreira Lopes O, Vázquez Vaamonde A (2003) Environment-friendly method of high alkaline bauxite´s red mud and ferrous slag utilization as an example of green chemistry. Green Chem 5:357–360

    Article  CAS  Google Scholar 

  • Nirel PMV, Morel FMM (1990) Pitfalls of sequential extractions. Water Res 24:1055–1056

    Article  CAS  Google Scholar 

  • Öman C, Hynning P (1993) Identification of organic compounds in municipal landfill leachates. Environ Pollut 80:265–271

    Article  Google Scholar 

  • Pagano G, Meriç S, De Biase A, Laccarino M, Petruzzelli D, Tünay O, Warnau M (2002) Toxicity of bauxite manufacturing by-products in sea urchin embryos. Ecotoxicol Environ Saf 51:28–34

    Article  CAS  Google Scholar 

  • Papatheodorou G, Papaefthymiou H, Maratou A, Ferentinos G (2005) Natural radionuclides in bauxitic tailings (red-mud) in the gulf of Corinth, Greece. Radioprotection 40:549–555

    Article  Google Scholar 

  • Pérez-Rodríguez A, Guitián-Rivera F, De Aza-Pendás S (1999) Obtención industrial de materiales cerámicos a partir de lodos rojos del proceso Bayer. Bol Soc Esp Cerám Vidrio 38:220–226

    Article  Google Scholar 

  • Power G, Gräfe M, Klauber C (2011) Bauxite residue issues: I. Current management, disposal and storage practices. Hydrometallurgy 108:33–45

    Google Scholar 

  • Quina MJ, Bordado JCM, Quinta-Ferreira RM (2009) The influence of pH on the leaching behaviour of inorganic components from municipal solid waste APC residues. Waste Manage 29:2483–2493

    Article  CAS  Google Scholar 

  • Real Decreto 1310/1990, de 29 de octubre, por el que se regula la utilización de los lodos de depuración en el sector agrario. BOE núm. 262 de 01/11/1990

  • Rubinos DA (2008) Utilización de lodos rojos de bauxita en la contención e inactivación de residuos tóxicos y peligrosos. PhD thesis dissertation. University of Santiago de Compostela

  • Rubinos DA, Arias M, Díaz-Fierros F, Barral MT (2005) Speciation of adsorbed arsenic (V) on red mud using a sequential extraction procedure. Mineralog Mag 69:591–600

    Article  CAS  Google Scholar 

  • Ruyters S, Mertens J, Vassilieva E, Dehandschutter B, Poffijn A, Smolders E (2011) The red mud accident in Ajka (Hungary): plant toxicity and trace metal bioavailability in red mud contaminated soil. Environ Sci Technol 45:1616–1622

    Article  CAS  Google Scholar 

  • Shuman LM (1982) Separating soil iron-and manganese-oxide fractions for microelement analysis. Soil Sci Soc Am J 46:1099–1102

    Article  CAS  Google Scholar 

  • Singh IB, Singh DR (2002) Cr (VI) removal in acidic aqueous solution using iron bearing industrial solid wastes and their stabilisation with cement. Environ Technol 23:85–95

    Article  CAS  Google Scholar 

  • Smith KA, Paterson JE (1995) Manganese and cobalt. In: Alloway BJ (ed) Heavy Metals in Soils, 2nd edn. Chapman & Hall, London, pp 224–244

    Chapter  Google Scholar 

  • Taylor R (1990) Interpretation of the correlation coefficient: a basic review. JDMS 1:35–39

    Google Scholar 

  • Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–851

    Article  CAS  Google Scholar 

  • UNSCEAR (2010) Sources and Effects of Ionizing Radiation, Annex B: Exposures of the Public and Workers from Various Sources of Radiation. United Nation Scientific Committee on the Effect of Atomic Radiation, UNSCEAR 2008, New York, USA

    Google Scholar 

  • US EPA (1984) Overview of solid waste generation, management, and chemical characteristics in the bauxite refining and primary aluminium industry. Office of Solid Waste, Washington DC, USA

    Google Scholar 

  • US EPA (1997) Test methods for evaluating solid waste—physical chemical methods. SW–846. Washington DC, USA

  • van der Sloot HA (1996) Developments in evaluating environmental impact from utilization of bulk inert wastes using laboratory leaching tests and field verification. Waste Manage 16:65–81

    Article  Google Scholar 

  • Wang S, Ang HM, Tadé MO (2008) Novel applications of red mud as coagulant, adsorbent and catalyst for environmentally benign processes. Chemosphere 72:1621–1635

    Article  CAS  Google Scholar 

  • Wong JW, Ho GE (1988). Neutralization and cation dissolution characteristics of bauxite refining residue. In: Hazardous and Industrial Waste, Proceedings of the 20th Mid-Atlantic Industrial Waste Conference, June 1988, Washington, DC

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Rubinos.

Additional information

Responsible editor: Vera Slaveykova

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubinos, D.A., Barral, M.T. Fractionation and mobility of metals in bauxite red mud. Environ Sci Pollut Res 20, 7787–7802 (2013). https://doi.org/10.1007/s11356-013-1477-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-1477-4

Keywords

Navigation