Skip to main content
Log in

Mercury distribution and accumulation in typical wetland ecosystems of Sanjiang Plain, Northeast China

  • Published:
Chinese Geographical Science Aims and scope Submit manuscript

Abstract

Total mercury in soil, water, plant, insects, fishes and bird feathers were determined to study mercury distribution and accumulation in typical wetland ecosystems in the Sanjiang Plain, Northeast China. Results show that total mercury concentrations in soils of Deyeuxia angustifolia wetland and Carex lascarpa wetland are 0.046 mg/kg and 0.063 mg/kg, respectively. Total mercury concentration in water bodies is 0.053 μg/L on average. Of four plants studied, total mercury in moss is the highest with the mean of 0.132 mg/kg. Of 10 terrestrial insect species studied, total mercury in centipede (Scolopendra spp.) is the highest with the mean of 0.515 mg/kg while total mercury in grasshopper (Oxya spp.) bodies is the lowest. Total mercury concentrations in the herbivorous, omnivorous and predatory insects are 10.18 ng/g, 16.47 ng/g and 213.35 ng/g on average, respectively. Total mercury concentrations of the adult feather (549.88 ± 63.04 ng/g), nestling feather (55.15 ± 23.53 ng/g), and eggshell (22.05 ± 5.96 ng/g) of the Grey heron (Ardea cinerea) are higher than those of the Great egret (Egretta alba) (adult feather: 446.57 ± 90.89 ng/g; nestling feather: 32.99 ± 17.15 ng/g; eggshell: 21.02 ± 3.17 ng/g) in the wetlands of the Sanjiang Plain. The bioconcentration factors decrease in the order of piscivorous fish muscle > omnivorous fish muscle > herbivorous fish > insect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ayas Z, 2007. Trace element residues in eggshells of grey heron (Ardea cinerea) and black-crowned night heron (Nycticorax nycticorax) from Nallihan Bird Paradise, Ankara-Turkey. Ecotoxicology, 16(4): 347–352. doi: 10.1007/s10646-007-0132-6

    Article  Google Scholar 

  • Beyer W N, Spalding M, Morrison D, 1997. Mercury concentrations in feathers of wading birds from Florida. AMBIO, 26(2): 97–100.

    Google Scholar 

  • Boncompagni E, Muhammad A, Jabeen R, 2003. Egrets as monitors of trace-metal contamination in wetlands of Pakistan. Archives of Environmental Contamination and Toxicology, 45(3): 399–406. doi: 10.1007/s00244-003-0198-y

    Article  Google Scholar 

  • Burger J, 1993. Metals in feathers of brown noddy (Anous stolidus): Evidence for bioaccumulation or exposure levels? Environmental Monitoring and Assessment, 24(2): 181–187. doi: 10.1007/BF00547986

    Article  Google Scholar 

  • Burger J, Gochfeld M, 1996. Heavy metal and selenium levels in birds at Agassiz National Wildlife Refuge, Minnesota: Food chain differences. Environmental Monitoring and Assessment, 43(3): 267–282. doi: 10.1007/BF00394454

    Article  Google Scholar 

  • Burger J, Eichhorst B, 2007. Heavy metals and selenium in grebe feathers from Agassiz National Wildlife Refuge in northern Minnesota. Archives of Environmental Contamination and Toxicology, 53(3): 442–449. doi: 10.1007/s00244-006-0060-0

    Article  Google Scholar 

  • Charles J H, Elwood F H, David J H et al., 2002. Nineteenth century mercury: Hazard to wading birds and cormorants of the Carson River, Nevada. Ecotoxicology, 11(4): 213–231. doi: 10.1023/A:1016327602656

    Article  Google Scholar 

  • Chiou C T, 2002. Bioconcentration of Organic Contaminants, in Partition and Adsorption of Organic Contaminants in Environmental Systems. Hoboken: John Wiley & Sons, Inc.

    Book  Google Scholar 

  • Covaci A, Gheorghe A, Hulea O et al., 2006. Levels and distribution of organochlorine pesticides, polychlorinated biphenyls and polybrominated diphenyl ethers in sediments and biota from the Danube Delta, Romania. Environmental Pollution, 140(1): 136–149. doi: 10.1016/j.envpol.2005.06.008

    Article  Google Scholar 

  • Doi R, Ohno H, Harada M, 1984. Mercury in feathers of wild birds from the mercury-polluted area along the shore of the Shiranui Sea, Japan. Science of the Total Environment, 40(1): 155–167.

    Article  Google Scholar 

  • Duvall S E, Barron M G, 2000. A screening level probabilistic risk assessment of mercury in Florida everglades food webs. Ecotoxicology and Environmental Safety, 47(3): 298–305. doi: 10.1006/eesa.2000.1949

    Article  Google Scholar 

  • Eagles S C, Ackerman J, Adelsbach T et al., 2008. Mercury correlations among six tissues for four waterbird species breeding in san Francisco bay, California, USA. Environmental Toxicology and Chemistry, 27(10): 2136–2153. doi: 10.1897/08-038

    Article  Google Scholar 

  • Ferreira A P, 2010. Estimation of heavy metals in little blue heron (Egretta caerulea) collected from sepetiba bay, rio de janeiro, brazil. Brazilian Journal of Oceanography, 58(4): 269–274. doi: 10.1590/S1679-87592010000400002

    Article  Google Scholar 

  • Fleming L E, Watkins S, B Kaderman et al., 1995. Mercury exposure in Humans through food consumption from the Everglades of Florida. Water, Air, & Soil Pollution, 80(1): 41–48. doi: 10.1007/BF01189651

    Article  Google Scholar 

  • Garcia E, Laroulandie J, Saint-Simon X R et al., 2006. Temporal and spatial distribution and production of dissolved gaseous mercury in the Bay St. François wetland, in the St. Lawrence River, Quebec, Canada. Geochimica et Cosmochimica Acta, 70(11): 2665–2678. doi: 10.1016/j.gca.2006.02.008

    Article  Google Scholar 

  • George B M, Batzer D, 2008. Spatial and temporal variations of mercury levels in Okefenokee invertebrates: Southeast Georgia. Environmental Pollution, 152(2): 484–490. doi: 10.1016/j.envpol.2007.04.030

    Article  Google Scholar 

  • Gnamus A, Byrne A R, Horvat M, 2000. Mercury in the soil-plant-deer-predator food chain of a temperate forest in Slovenia. Environmental Science & Technology, 34(16): 3337–3345. doi: 10.1021/es991419w

    Article  Google Scholar 

  • Goutner V, Furness R W, 1997. Mercury in feathers of little egret Egretta garzetta and Night Heron Nycticorax nycticorax chicks and in their prey in the Axios Delta, Greece. Archives of Environmental Contamination and Toxicology, 32(2): 211–216. doi: 10.1007/s002449900177

    Article  Google Scholar 

  • Gray J S, 2002. Biomagnification in marine systems: The perspective of an ecologist. Marine Pollution Bulletin, 45(1): 46–52. doi: 10.1016/S0025-326X(01)00323-X

    Article  Google Scholar 

  • Guo Donglong, Zhou Meisu, Xi Yuying et al., 2001. Preliminary studies on the level and distribution of mercury in feathers of birds. Acta Zoologica Sinica, 47(S1): 139–149. (in Chinese)

    Google Scholar 

  • Hare L, 1992. Aquatic insects and trace metals: Bioavailability, bioaccumulation, and toxicity. Critical Reviews in Toxicology, 22(5–6): 327–369. doi: 10.3109/10408449209146312

    Article  Google Scholar 

  • Heath J A, Frederick P C, 2005. Relationships among mercury concentrations, hormones, and nesting effort of White Ibises (Eudocimus albus) in the Florida Everglades. The Auk, 122(1): 255–267. doi: 10.1642/0004-8038(2005)122

    Article  Google Scholar 

  • Hendriks A J, Heikens A, 2001. The power of size. 2. Rate constants and equilibrium ratios for accumulation of inorganic substances related to species weight. Environmental Toxicology and Chemistry, 20(7): 1421–1437. doi: 10.1002/etc.5620200704

    Article  Google Scholar 

  • Houserova P, Kuban V, Kracmar S et al., 2007. Total mercury and mercury species in birds and fish in an aquatic ecosystem in the Czech Republic. Environmental Pollution, 145(1): 185–194. doi: 10.1016/j.envpol.2006.03.027

    Article  Google Scholar 

  • Hsu M J, Selvaraj K, Agoramoorthy G, 2006. Taiwan’s industrial heavy metal pollution threatens terrestrial biota. Environmental Pollution, 143(2): 327–334. doi: 10.1016/j.envpol.2005.11.023

    Article  Google Scholar 

  • Ji Y, Feng Y, Wu J et al., 2008. Using geoaccumulation index to study source profiles of soil dust in China. Journal of Envrionmental Sciences, 20(5): 571–578. doi: 10.1016/S1001-0742(08)62096-3

    Article  Google Scholar 

  • Kannan K, Smith R G, Lee J R F et al., 1998. Distribution of total mercury and methyl mercury in water, sediment, and fish from South Florida estuaries. Archives of Environmental Contamination and Toxicology, 34(2): 109–118. doi: 10.1007/s002449900294

    Article  Google Scholar 

  • Kim E Y, Saeki K, Tanabe S et al., 1996. Specific accumulation of mercury and selenium in seabirds. Environmental Pollution, 94(3): 261–265. doi: 10.1016/S0269-7491(96)00110-8

    Article  Google Scholar 

  • Liu Ruhai, Wang Qchao, Lu Xianguo et al., 2002a. Mercury in the peat bog ecosystem in Xiaoxing’an Mountain in China. Environmental Science, 23(4): 102–106. (in Chinese)

    Google Scholar 

  • Liu Rhai, Wang Qchao, Lu Xianguo et al., 2002b. The geochemistry characteristics of mercury in Sanjiang Plain marsh. Acta Scientiae Circumstantiae, 22(5): 661–663. (in Chinese)

    Google Scholar 

  • Liu Ruhai, Wang Qichao, Lu Xianguo et al., 2004. Distribution and stock of mercury in typical wetland plant in the Sanjiang Plain. Chinese Journal of Applied Ecology, 15(2): 287–290. (in Chinese)

    Google Scholar 

  • Liu Xingtu, 2005. Wetlands in Northeast China. Beijing: Science Press. (in Chinese)

    Google Scholar 

  • Liu G, Cai Y, Philippi T et al., 2008. Distribution of total and methylmercury in different ecosystem compartments in the Everglades: Implications for mercury bioaccumulation. Environmental Pollution 153(2): 257–265. doi: 10.1016/j.envpol.2007.08.030

    Article  Google Scholar 

  • National Research Council Committee on Restoration of Greater Everglades Ecosystem, 2005. Re-engineering Water Storage in the Everglades: Risks and Opportunities. Washington, DC: The National Academies Press.

    Google Scholar 

  • Ochoa-acuña H, Sepúlveda M S, Gross T S, 2002. Mercury in feathers from Chilean birds: Influence of location, feeding strategy, and taxonomic affiliation. Marine Pollution Bulletin, 44(4): 340–345. doi: 10.1016/j.marpolbul.2009.04.004

    Article  Google Scholar 

  • Paterson M J, Rudd J W M, Louis V S T, 1998. Increase of total and methylmercury in zooplankton following flooding of peatland reservoir. Environmental Science & Technology, 32(24): 3868–3874. doi: 10.1021/es980343l

    Article  Google Scholar 

  • Pirrone N, 2001. Mercury research in Europe: Towards the preparation of the new EU Air Quality Directive. Atmospheric Environment, 35(17): 2979–2986. doi: 10.1016/S1352-2310(01)00101-7

    Article  Google Scholar 

  • Pirrone N, Keeler G J, Nriagu J O, 1996. Regional differences in worldwide emission of mercury to the atmosphere. Atmospheric Environment, 30(37): 2981–2987. doi: 10.1016/1352-2310(95)00498-X

    Article  Google Scholar 

  • Ravichandran M, 2004. Interactions between mercury and dissolved organic matter—A review. Chemosphere, 55(3): 319–331. doi: 10.1016/j.chemosphere.2003.11.011

    Article  Google Scholar 

  • Savinov V M, Gabrielsen G W, Savinova T N, 2003. Cadmium, zinc, copper, arsenic, selenium and mercury in seabirds from the Barents Sea: Levels, inter-specific and geographical differences. Science of The Total Environment, 306(3): 133–158. doi: 10.1016/s0048-9697(02)00489-8

    Article  Google Scholar 

  • Sepúlveda M S, Williams J G E, Frederick P C et al., 1999. Effects of mercury on health and first-year survival of free-ranging Great egrets (Ardea albus) from southern Florida. Archives of Environmental Contamination and Toxicology, 37(3): 369–376. doi: 10.1007/s002449900527

    Article  Google Scholar 

  • Spalding M G, Frederick P C, McGill H C et al., 2000. Methylmercury accumulation in tissues and its effects on growth and appetite in captive Great egrets. Journal of Wildlife Diseases, 36(3): 411–422.

    Google Scholar 

  • Streit B, 1992. Bioaccumulation processes in ecosystems. Cellular and Molecular Life Sciences, 48(10): 955–970. doi: 10.1007/BF01919142

    Article  Google Scholar 

  • Sun X, Wang Q, Ma H et al., 2011. Effects of plant rhizosphere on mercury methylation in sediments. Journal of Soils and Sediments, 11(6): 1062–1069. doi: 10.1007/s11368-011-0403-y

    Article  Google Scholar 

  • Sunderland E M, Gobas F A P C, Heyes A et al., 2004. Speciation and bioavailability of mercury in well-mixed estuarine sediments. Marine Chemistry, 90(4): 91–105.

    Article  Google Scholar 

  • Thompson D R, Bearhop S, Speakman J R et al., 1998. Feathers as a means of monitoring mercury in seabirds: Insights from stable isotope analysis. Environmental Pollution, 101(2): 193–200. doi: 10.1016/S0269-7491(98)00078-5

    Article  Google Scholar 

  • Wang Qichao, Liu Ruhai, Lu Xianguo et al., 2002. Progress of study on the mercury process in the wetland environment. Advanced Earth Sciences, 17(6): 881–885. (in Chinese)

    Google Scholar 

  • Willis J, Gambrell R, Hester M, 2011. Mercury concentrations in oligohaline wetland vegetation and associated soil biogeochemistry. Environmental Monitoring and Assessment, 181(1): 373–383. doi: 10.1007/s10661-010-1835-3

    Article  Google Scholar 

  • Zhang Z S, Lu X G, Wang Q C et al., 2009. Mercury, cadmium and lead biogeochemistry in the soil-plant-insect system in Huludao City. Bulletin of Environmental Contamination and Toxicology, 83(2): 255–259. doi: 10.1007/s00128-009-9688-6

    Article  Google Scholar 

  • Zhang Z S, Sun X J, Wang Q C et al., 2010. Recovery from mercury contamination in the Second Songhua River, China. Water, Air, & Soil Pollution, 211(4): 219–229. doi: 10.1007/s11270-009-0294-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianguo Lu.

Additional information

Foundation item: Under the auspices of National Natural Science Foundation of China (No. 41001026), Major State Basic Research Development Program of China (No. 2010CB951304), Frontier Program of Northeast Institute of Geography and Agroecology (No. KZCX3-SW-NA09-03)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Q., Zhang, Z., Zhou, X. et al. Mercury distribution and accumulation in typical wetland ecosystems of Sanjiang Plain, Northeast China. Chin. Geogr. Sci. 23, 49–58 (2013). https://doi.org/10.1007/s11769-013-0553-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11769-013-0553-x

Keywords

Navigation