Center, N.S.C.I.S. (2021). National Spinal Cord Injury Statistical Center, Facts and Figures at a Glance. Birmingham: University of Alabama at Birmingham. https://www.nscisc.uab.edu/Public/Facts%20and%20Figures%20-%202021.pdf. Accessed 1 June 2021.
Roger, V. L., Go, A. S., Lloyd-Jones, D. M., Benjamin, E. J., Berry, J. D., Borden, W. B., et al. (2012). Heart disease and stroke statistics-2012 update: A report from the American Heart Association. Circulation, 125(1), e2–e220.
Google Scholar
Hendricks, H. T., Van Limbeek, J., Geurts, A. C., & Zwarts, M. J. (2002). Motor recovery after stroke: A systematic review of the literature. Archives of Physical Medicine and Rehabilitation, 83(11), 1629–1637.
Google Scholar
Gor-García-Fogeda, M. D., Molina-Rueda, F., Cuesta-Gómez, A., Carratalá-Tejada, M., Alguacil-Diego, I. M., & Miangolarra-Page, J. C. (2014). Scales to assess gross motor function in stroke patients: A systematic review. Archives of Physical Medicine and Rehabilitation, 95(6), 1174–1183.
Google Scholar
Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain-computer interfaces for communication and control. Clinical Neurophysiology, 113(6), 767–791.
Google Scholar
Nordhausen, C. T., Maynard, E. M., & Normann, R. A. (1996). Single unit recording capabilities of a 100 microelectrode array. Brain Research, 726(1–2), 129–140.
Google Scholar
Guillory, K. S., & Normann, R. A. (1999). A 100-channel system for real time detection and storage of extracellular spike waveforms. Journal of Neuroscience Methods, 91(1–2), 21–29.
Google Scholar
Barrese, J. C., Rao, N., Paroo, K., Triebwasser, C., Vargas-Irwin, C., Franquemont, L., & Donoghue, J. P. (2013). Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates. Journal of Neural Engineering, 10(6), 066014.
Google Scholar
Sutter, E. E. (1992). The brain response interface: Communication through visually-induced electrical brain responses. Journal of Microcomputer Applications, 15(1), 31–45.
MathSciNet
Google Scholar
Kennedy, P. R., & Bakay, R. A. (1998). Restoration of neural output from a paralyzed patient by a direct brain connection. Neuroreport, 9(8), 1707–1711.
Google Scholar
Birbaumer, N., Ghanayim, N., Hinterberger, T., Iversen, I., Kotchoubey, B., Kübler, A., Perelmouter, J., Taub, E., & Flor, H. (1999). A spelling device for the paralysed. Nature, 398(6725), 297–298.
Google Scholar
Hochberg, L. R., Serruya, M. D., Friehs, G. M., Mukand, J. A., Saleh, M., Caplan, A. H., Branner, A., Chen, D., Penn, R. D., & Donoghue, J. P. (2006). Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature, 442(7099), 164–171.
Google Scholar
Hochberg, L. R., Bacher, D., Jarosiewicz, B., Masse, N. Y., Simeral, J. D., Vogel, J., Haddadin, S., Liu, J., Cash, S. S., Van Der Smagt, P., et al. (2012). Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature, 485(7398), 372–375.
Google Scholar
Sabharwal, S. (2019). Cardiovascular dysfunction in spinal cord disorders. In S. Kirshblum & V. W. Lin (Eds.), Spinal cord medicine (Vol. 16, pp. 212–229). New York: Springer.
Google Scholar
Zehnder, Y., Lüthi, M., Michel, D., Knecht, H., Perrelet, R., Neto, I., et al. (2004). Long-term changes in bone metabolism, bone mineral density, quantitative ultrasound parameters, and fracture incidence after spinal cord injury: A cross-sectional observational study in 100 paraplegic men. Osteoporosis International, 15(3), 180–189.
Google Scholar
Henzel, M. K., & Bogie, K. (2019). Medical management of pressure injuries in patients with spinal cord disorders. In S. Kirshblum & V. W. Lin (Eds.), Spinal cord medicine (Vol. 29, pp. 516–543). New York: Springer.
Google Scholar
Keirstead, H. S., Nistor, G., Bernal, G., Totoiu, M., Cloutier, F., Sharp, K., & Steward, O. (2005). Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. Journal of Neuroscience, 25(19), 4694–4705.
Google Scholar
Lineage Cell Therapeutics, Inc. (2014). Safety study of GRNOPC1 in spinal cord injury. https://clinicaltrials.gov/ct2/show/NCT01217008. Accessed 31 May 2021.
Lineage Cell Therapeutics, Inc. (2019). Dose escalation study of AST-OPC1 in spinal cord injury. https://clinicaltrials.gov/ct2/show/NCT02302157. Accessed 31 May 2021.
Angeli, C. A., Boakye, M., Morton, R. A., Vogt, J., Benton, K., Chen, Y., Ferreira, C. K., & Harkema, S. J. (2018). Recovery of over-ground walking after chronic motor complete spinal cord injury. New England Journal of Medicine, 379(13), 1244–1250.
Google Scholar
Gill, M. L., Grahn, P. J., Calvert, J. S., Linde, M. B., Lavrov, I. A., Strommen, J. A., Beck, L. A., Sayenko, D. G., Van Straaten, M. G., Drubach, D. I., et al. (2018). Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia. Nature Medicine, 24(11), 1677–1682.
Google Scholar
Wang, P. T., King, C. E., Chui, L. A., Do, A. H., & Nenadic, Z. (2012). Self-paced brain-computer interface control of ambulation in a virtual reality environment. Journal of Neural Engineering, 9(5), 056016.
Google Scholar
Alkadhi, H., Brugger, P., Boendermaker, S. H., Crelier, G., Curt, A., Hepp-Reymond, M.-C., & Kollias, S. S. (2005). What disconnection tells about motor imagery: Evidence from paraplegic patients. Cerebral Cortex, 15(2), 131–140.
Google Scholar
Pfurtscheller, G., Leeb, R., Keinrath, C., Friedman, D., Neuper, C., Guger, C., & Slater, M. (2006). Walking from thought. Brain Research, 1071(1), 145–152.
Google Scholar
Leeb, R., Friedman, D., Müller-Putz, G. R., Scherer, R., Slater, M., & Pfurtscheller, G. (2007). Self-paced (asynchronous) BCI control of a wheelchair in virtual environments: A case study with a tetraplegic. Computational Intelligence and Neuroscience, 2007, 079642. https://doi.org/10.1155/2007/79642.
Article
Google Scholar
Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90(430), 773–795.
MathSciNet
MATH
Google Scholar
Fukunaga, K. (2013). Introduction to statistical pattern recognition. Amsterdam: Elsevier.
MATH
Google Scholar
Nenadic, Z. (2007). Information discriminant analysis: Feature extraction with an information-theoretic objective. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(8), 1394–1407.
Google Scholar
Das, K., & Nenadic, Z. (2009). An efficient discriminant-based solution for small sample size problem. Pattern Recognition, 42(5), 857–866.
MATH
Google Scholar
Das, K., & Nenadic, Z. (2008). Approximate information discriminant analysis: A computationally simple heteroscedastic feature extraction technique. Pattern Recognition, 41(5), 1548–1557.
MATH
Google Scholar
Duda, R. O., Hart, P. E., & Stork, D. G. (2006). Pattern classification. Hoboken: Wiley.
MATH
Google Scholar
Das, K., Rizzuto, D. S., & Nenadic, Z. (2009). Mental state estimation for brain–computer interfaces. IEEE Transactions on Biomedical Engineering, 56(8), 2114–2122.
Google Scholar
Kubler, A., & Muller, K.-R. (2007). An introduction to brain–computer interfacing. In G. Dornhege, J. R. del Millan, T. Hinterberger, D. J. McFarland, & K.-R. Muller (Eds.), Toward brain–computer interfacing (Vol. 11, pp. 1–25). Cambridge: The MIT Press.
Google Scholar
King, C. E., Wang, P. T., Chui, L. A., Do, A. H., & Nenadic, Z. (2013). Operation of a brain–computer interface walking simulator for individuals with spinal cord injury. Journal of Neuroengineering and Rehabilitation, 10(77), 1–14.
Google Scholar
Cramer, S. C., Orr, E. L., Cohen, M. J., & Lacourse, M. G. (2007). Effects of motor imagery training after chronic, complete spinal cord injury. Experimental Brain Research, 177(2), 233–242.
Google Scholar
Do, A. H., Wang, P. T., King, C. E., Chun, S. N., & Nenadic, Z. (2013). Brain-computer interface controlled robotic gait orthosis. Journal of Neuroengineering and Rehabilitation, 10(111), 1–9.
Google Scholar
Pfurtscheller, G. (1997). Eeg event-related desynchronization (ERD) and synchronization (ERS). Electroencephalography and Clinical Neurophysiology, 1(103), 26.
Google Scholar
King, C. E., Wang, P. T., McCrimmon, C. M., Chou, C. C., Do, A. H., & Nenadic, Z. (2015). The feasibility of a brain–computer interface functional electrical stimulation system for the restoration of overground walking after paraplegia. Journal of Neuroengineering and Rehabilitation, 12(80), 1–11.
Google Scholar
Klose, K. J., Jacobs, P. L., Broton, J. G., Guest, R. S., Needham-Shropshire, B. M., Lebwohl, N., et al. (1997). Evaluation of a training program for persons with sci paraplegia using the Parastep®1 ambulation system: Part 1. Ambulation performance and anthropometric measures. Archives of Physical Medicine and Rehabilitation, 78(8), 789–793.
Google Scholar
Wang, P. T., King, C. E., Do, A. H., & Nenadic, Z. (2012). Pushing the communication speed limit of a noninvasive BCI speller. arXiv preprint. arXiv:1212.0469.
Santhanam, G., Ryu, S. I., Byron, M. Y., Afshar, A., & Shenoy, K. V. (2006). A high-performance brain–computer interface. Nature, 442(7099), 195–198.
Google Scholar
Donati, A. R., Shokur, S., Morya, E., Campos, D. S., Moioli, R. C., Gitti, C. M., et al. (2016). Long-term training with a brain–machine interface-based gait protocol induces partial neurological recovery in paraplegic patients. Scientific Reports, 6(1), 1–16.
Google Scholar
Tam, W.-K., Tong, K.-Y., Meng, F., & Gao, S. (2011). A minimal set of electrodes for motor imagery bci to control an assistive device in chronic stroke subjects: A multi-session study. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 19(6), 617–627.
Google Scholar
Debener, S., Minow, F., Emkes, R., Gandras, K., & De Vos, M. (2012). How about taking a low-cost, small, and wireless eeg for a walk? Psychophysiology, 49(11), 1617–1621.
Google Scholar
Lin, C.-T., Chen, Y.-C., Huang, T.-Y., Chiu, T.-T., Ko, L.-W., Liang, S.-F., Hsieh, H.-Y., Hsu, S.-H., & Duann, J.-R. (2008). Development of wireless brain computer interface with embedded multitask scheduling and its application on real-time driver’s drowsiness detection and warning. IEEE Transactions on Biomedical Engineering, 55(5), 1582–1591.
Google Scholar
Shyu, K.-K., Lee, P.-L., Lee, M.-H., Lin, M.-H., Lai, R.-J., & Chiu, Y.-J. (2010). Development of a low-cost fpga-based ssvep bci multimedia control system. IEEE Transactions on Biomedical Circuits and Systems, 4(2), 125–132.
Google Scholar
McCrimmon, C. M., Fu, J. L., Wang, M., Lopes, L. S., Wang, P. T., Karimi-Bidhendi, A., et al. (2017). Performance assessment of a custom, portable, and low-cost brain–computer interface platform. IEEE Transactions on Biomedical Engineering, 64(10), 2313–2320.
Google Scholar
Schalk, G., & Leuthardt, E. C. (2011). Brain–computer interfaces using electrocorticographic signals. IEEE Reviews in Biomedical Engineering, 4, 140–154.
Google Scholar
Wu, C., Evans, J. J., Skidmore, C., Sperling, M. R., & Sharan, A. D. (2013). Impedance variations over time for a closed-loop neurostimulation device: Early experience with chronically implanted electrodes. Neuromodulation Technology at the Neural Interface, 16(1), 46–50.
Google Scholar
Sillay, K. A., Rutecki, P., Cicora, K., Worrell, G., Drazkowski, J., Shih, J. J., Sharan, A. D., Morrell, M. J., Williams, J., & Wingeier, B. (2013). Long-term measurement of impedance in chronically implanted depth and subdural electrodes during responsive neurostimulation in humans. Brain Stimulation, 6(5), 718–726.
Google Scholar
Nair, D. R., Laxer, K. D., Weber, P. B., Murro, A. M., Park, Y. D., Barkley, G. L., Smith, B. J., Gwinn, R. P., Doherty, M. J., Noe, K. H., et al. (2020). Nine-year prospective efficacy and safety of brain-responsive neurostimulation for focal epilepsy. Neurology, 95(9), e1244–e1256.
Google Scholar
Hiremath, S. V., Tyler-Kabara, E. C., Wheeler, J. J., Moran, D. W., Gaunt, R. A., Collinger, J. L., et al. (2017). Human perception of electrical stimulation on the surface of somatosensory cortex. PloS One, 12(5), e0176020.
Google Scholar
Lee, B., Kramer, D., Salas, M. A., Kellis, S., Brown, D., Dobreva, T., et al. (2018). Engineering artificial somatosensation through cortical stimulation in humans. Frontiers in Systems Neuroscience, 12, 24.
Google Scholar
McCrimmon, C. M., Wang, P. T., Heydari, P., Nguyen, A., Shaw, S. J., Gong, H., Chui, L. A., Liu, C. Y., Nenadic, Z., & Do, A. H. (2018). Electrocorticographic encoding of human gait in the leg primary motor cortex. Cerebral Cortex, 28(8), 2752–2762.
Google Scholar
Wang, P. T., McCrimmon, C. M., Shaw, S. J., Gong, H., Chui, L. A., Heydari, P., Liu, C. Y., Do, A. H., & Nenadic, Z. (2021). Decoding of the walking states and step rates from cortical electrocorticogram signals. arXiv preprint. arXiv:2104.07062.
Malekzadeh-Arasteh, O., Pu, H., Lim, J., Liu, C. Y., Do, A. H., Nenadic, Z., & Heydari, P. (2019). An energy-efficient cmos dual-mode array architecture for high-density ecog-based brain-machine interfaces. IEEE Transactions on Biomedical Circuits and Systems, 14(2), 332–342.
Google Scholar
Lee, M.-C., Karimi-Bidhendi, A., Malekzadeh-Arasteh, O., Wang, P. T., Do, A. H., Nenadic, Z., & Heydari, P. (2019). A cmos medradio transceiver with supply-modulated power saving technique for an implantable brain–machine interface system. IEEE Journal of Solid State Circuits, 54(6), 1541–1552.
Google Scholar
Pu, H., Danesh, A. R., Malekzadeh-Arasteh, O., Sohn, W. J., Do, A. H., Nenadic, Z., & Heydari, P. (2021). A 40v voltage-compliance 12.75ma maximum-current multipolar neural stimulator using time-based charge balancing technique achieving 2mv precision. In: IEEE custom integrated circuits conference (CICC).
Pu, H., Lim, J., Kellis, S., Liu, C. Y., Andersen, R. A., Do, A. H., et al. (2020). Optimal artifact suppression in simultaneous electrocorticography stimulation and recording for bi-directional brain-computer interface applications. Journal of Neural Engineering, 17(2), 026038.
Google Scholar
Serrano-Amenos, C., Hu, F., Wang, P. T., Kellis, S., Andersen, R. A., Liu, C. Y., Heydari, P., Do, A. H., & Nenadic, Z. (2020). Thermal analysis of a skull implant in brain–computer interfaces. In: The 42nd annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp. 3066–3069. Montreal.
Benabid, A. L., Costecalde, T., Eliseyev, A., Charvet, G., Verney, A., Karakas, S., et al. (2019). An exoskeleton controlled by an epidural wireless brain–machine interface in a tetraplegic patient: A proof-of-concept demonstration. The Lancet Neurology, 18(12), 1112–1122.
Google Scholar
Wang, W., Collinger, J. L., Degenhart, A. D., Tyler-Kabara, E. C., Schwartz, A. B., Moran, D. W., et al. (2013). An electrocorticographic brain interface in an individual with tetraplegia. PloS One, 8(2), e55344.
Google Scholar
Hebb, D. O. (2005). The organization of behavior: A neuropsychological theory. Hove: Psychology Press.
Google Scholar
McCrimmon, C. M., King, C. E., Wang, P. T., Cramer, S. C., Nenadic, Z., & Do, A. H. (2015). Brain-controlled functional electrical stimulation therapy for gait rehabilitation after stroke: A safety study. Journal of Neuroengineering and Rehabilitation, 12(57), 1–12.
Google Scholar
Wade, D., Wood, V., Heller, A., Maggs, J., et al. (1987). Walking after stroke: Measurement and recovery over the first 3 months. Scandinavian Journal of Rehabilitation Medicine, 19(1), 25–30.
Google Scholar
Dorsch, S., Ada, L., Canning, C. G., Al-Zharani, M., & Dean, C. (2012). The strength of the ankle dorsiflexors has a significant contribution to walking speed in people who can walk independently after stroke: An observational study. Archives of Physical Medicine and Rehabilitation, 93(6), 1072–1076.
Google Scholar
University of California, Irvine. (2020). BCI-FES Therapy for Stroke Rehabilitation. https://clinicaltrials.gov/ct2/show/NCT04279067. Accessed 15 June 2021.