Skip to main content
Log in

Inhibition of Cycloartenol Synthase (CAS) Function in Tobacco BY-2 Cell Suspensions: A Proteomic Analysis

  • Communication
  • Published:
Lipids

Abstract

The effect of an inhibitor of cycloartenol synthase (CAS, EC 5.4.99.8) on the proteome of tobacco BY-2 cells has been examined. CAS catalyzes the first committed step in phytosterol synthesis in plants. BY-2 cells were treated with RO 48-8071, a potent inhibitor of oxidosqualene cyclization. Proteins were separated by two-dimensional electrophoresis and spots, that clearly looked differentially accumulated after visual inspection, were cut, in-gel trypsin digested, and peptides were analyzed by nano-HPLC–MS/MS. Distinct peptides were compared to sequences in the data banks and attributed to corresponding proteins and genes. Inhibition of CAS induced proteins that appear to mitigate the negative effects of the chemical exposure. However, as all enzymes that are directly involved in phytosterol biosynthesis are low-abundant proteins, significant changes in their levels could not be observed. Differences could be seen with enzymes involved in primary metabolism (glycolysis, pentose phosphate pathway etc.), in proteins of the chaperonin family, and those, like actin, that participate in formation and strengthening of the cytoskeleton and have some impact on cell growth and division.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Abbreviations

BY-2 cells:

Bright Yellow cells

CAS:

Cycloartenol synthase

CHAPS:

3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate

EC:

Enzyme catalogue

EMBL:

European Molecular Biology Laboratory

ER:

Endoplasmic reticulum

GAP:

Glyceraldehyde 3-phosphate

IEF:

Isoelectric focusing

IPG:

Immobilized pH gradient

HMG-CoA:

3-Hydroxy-3-methylglutaryl-coenzyme A

HMGR:

HMG-CoA reductase

HSP:

Heat shock protein

LAS:

Lanosterol synthase

2D PAGE:

Two-dimensional polyacrylamide gel electrophoresis

PBS:

Phosphate buffer saline

PDB:

Protein data bank

RuBisCO:

Ribulose bisphosphate carboxylase/oxidase

SAM:

S-Adenosyl-methionine

SMT:

Sterol methyltransferase

SDS:

Sodium dodecyl sulfate

SSRP1:

Structure-specific recognition protein 1

TCA:

Trichloroacetic acid

TOF:

Time of flight

Tris:

Trishydroxymethylaminomethane, or 2-amino-2-hydroxymethyl-1,3-propanediol

VIGS:

Virus-induced gene silencing

References

  1. Cattel L, Ceruti M (1997) Inhibitors of 2,3-oxidosqualene cyclase as tools for studying the mechanism and function of the enzyme. In: Parish EJ, Nes WD (eds) Biochemistry and function of sterols. CRC Press, Boca-Raton, chapter 1, pp 1–21

  2. Morand OH, Aebi JD, Dehmlow H, Ji Y-H, Gains N, Lengsfeld H, Himber J (1997) Ro 48-8071, a new 2,3-oxidosqualene:lanosterol cyclase inhibitor lowering plasma cholesterol in hamsters, squirrel monkeys, and minipigs: comparison to simvastatin. J Lipid Res 38:273–390

    Google Scholar 

  3. Peffley DM, Gayzn AK, Morand OH (1998) Down-regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase mRNA levels and synthesis in Syrian hamster C100 cells by the oxidosqualene cyclase inhibitor [4′-(6-allyl-ethyl-amino-hexyloxy)-2′-fluoro-phenyl]-(4-bromophenyl)-methanone (Ro 48-8071): comparison to simvastatin––comparison with inhibitors of HMG-CoA reductase. Biochem Pharmacol 56:439–449

    Article  CAS  PubMed  Google Scholar 

  4. Liang Y, Besch-Williford C, Aebi JD, Mafuvadze B, Cook MT, Zou X, Hyder SM (2014) Cholesterol biosynthesis inhibitors as potent novel anti-cancer agents: suppression of hormone-dependent breast cancer by the oxidosqualene cyclase inhibitor RO 48-8071. Breast Cancer Res Treat 146:51–62

    Article  CAS  PubMed  Google Scholar 

  5. Dang T, Abe I, Zheng Y-F, Prestwich GD (1999) The binding site for an inhibitor of squalene:hopene cyclase determined using photoaffinity labeling and molecular modeling. Chem Biol 6:333–341

    Article  CAS  PubMed  Google Scholar 

  6. Lenhart A, Weihofen WA, Pleschke AEW, Schulz GE (2002) Crystal structure of a squalene cyclase in complex with the potential anticholesteremic drug RO 48-8071. Chem Biol 9:639–645

    Article  CAS  PubMed  Google Scholar 

  7. Thoma R, Schulz-Gasch T, D’Arcy B, Benz J, Aebi J, Dehmlow H, Hennig M, Stihle M, Ruf A (2004) Insight into steroid scaffold formation from the structure of human oxidosqualene cyclase. Nature 432:118–122

    Article  CAS  PubMed  Google Scholar 

  8. Fabris M, Matthijs M, Carbonelle S, Moses T, Pollier J, Dasseville R, Baart GJE, Vyverman W, Goossens A (2014) Tracking the sterol biosynthesis pathway of the diatom Phaeodactylum tricornutum. New Phytol 204:521–535

    Article  CAS  PubMed  Google Scholar 

  9. Gas-Pascual E, Berna A, Bach TJ, Schaller H (2014) Plant oxidosqualene metabolism: cycloartenol synthase-dependent sterol biosynthesis in Nicotiana benthamiana. PLoS One e109156. doi: 10.1371/journal.pone.0109156

  10. Gas-Pascual E, Simonovik B, Schaller H, Bach TJ (2015) Inhibition of cycloartenol synthase (CAS) function in tobacco BY-2 cells. Lipids. doi:10.1007/s11745-015-4036-6

  11. Ramagli LS, Rodriguez LV (1985) Quantitation of microgram amounts of protein in two-dimensional polyacrylamide gel electrophoresis sample buffer. Electrophoresis 6:559–563

    Article  CAS  Google Scholar 

  12. Bertile F, Schaeffer C, Le Maho Y, Raclot T, Van Dorsselaer A (2009) A proteomic approach to identify differentially expressed plasma proteins between the fed and prolonged fasted states. Proteomics 9:148–158

    Article  CAS  PubMed  Google Scholar 

  13. Dahal D, Heintz D, Van Dorsselaer A, Braun HP, Wydra K (2009) Pathogenesis and stress related, as well as metabolic proteins are regulated in tomato stems infected with Ralstonia solanacearum. Plant Physiol Biochem 47:838–846

    Article  CAS  PubMed  Google Scholar 

  14. Führs H, Behrens C, Gallien S, Heitz D, Van Dorsselaer A, Braun H-P, Horst WJ (2010) Physiological and proteomic characterization of manganese sensitivity and tolerance in rice (Oryza sativa) in comparison with barley (Hordeum vulgare). Ann Bot 105:1129–1140

    Article  PubMed Central  PubMed  Google Scholar 

  15. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  16. Liu Y, Burch-Smith T, Schiff M, Feng S, Dinesh-Kumar SP (2004) Molecular chaperone Hsp 90 associates with resistance protein N and its signaling proteins SGT1 and Rar1 to modulate an innate immune response in plants. J Biol Chem 279:2101–2108

    Article  CAS  PubMed  Google Scholar 

  17. Vidal V, Ranti B, Dillenschneider M, Charpenteau M, Ranjeva R (1993) Molecular characterization of a 70 kDa heat shock protein of bean mitochondria. Plant J 3:143–150

    Article  CAS  PubMed  Google Scholar 

  18. Heazlewood JL, Tonti-Filippini JS, Gout AM, Day DA, Whelan J, Millar AH (2004) Experimental analysis of the Arabidopsis mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins. Plant Cell 16:241–256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Kuo WY, Huang CH, Liu AC, Cheng CP, Li SH, Chang WC, Weiss C, Azem A, Jinn TL (2013) CHAPERONIN 20 mediates iron superoxide dismutase (FeSOD) activity independent of its co-chaperonin role in Arabidopsis chloroplasts. New Phytol 197:99–110

    Article  CAS  PubMed  Google Scholar 

  20. Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:1360–1385

    Google Scholar 

  21. Baneyx F, Bertsch U, Kalbach CE, van der Vies SM, Soll J, Gatenby AA (1995) Spinach chloroplast cpn21 co-chaperonin possesses two functional domains fused together in a toroidal structure and exhibits nucleotide-dependent binding to plastid chaperonin 60. J Biol Chem 270:10695–10702

    Article  CAS  PubMed  Google Scholar 

  22. Kaydamov C, Tewesa A, Adler K, Manteuffel R (2000) Molecular characterization of cDNAs encoding G protein α and β subunits and study of their temporal and spatial expression patterns in Nicotiana plumbaginifolia Viv. BBA Gene Struct Express 1491:143–160

    Article  CAS  Google Scholar 

  23. Ishida S, Takahashi Y, Nagata T (1993) Isolation of cDNA of an auxin-regulated gene encoding a G protein β subunit-like protein from tobacco BY-2 cells. Proc Natl Acad Sci USA 90:11152–11156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Deveraux Q, Ustrell V, Pickart C, Rechsteiner M (1994) A 26 S protease subunit that binds ubiquitin conjugates. J Biol Chem 269:7059–7061

    CAS  PubMed  Google Scholar 

  25. Fu H, Doelling JH, Arendt CS, Hochstrasser M, Vierstra RD (1998) Molecular organization of the 20S proteasome gene family from Arabidopsis thaliana. Genetics 149:677–692

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Dickson R, Weiss C, Howard RJ, Alldrick SP, Ellis RJ, Lorimer G, Azem A, Viitanen PV (2000) Reconstitution of higher plant chloroplast chaperonin 60 tetradecamers active in protein folding. J Biol Chem 275:11829–11835

    Article  CAS  PubMed  Google Scholar 

  27. Musgrove JE, Jonson RA, Ellis RJ (1987) Dissociation of the ribulose bisphosphate carboxylase large subunit binding protein into dissimilar subunits. Eur J Biochem 163:529–534

    Article  CAS  PubMed  Google Scholar 

  28. Demirevska K, Simova-Stoilova Vassilva V, Feller U (2008) Rubisco and some chaperone protein responses to water stress and rewatering at early seedling growth of drought sensitive and tolerant wheat varieties. Plant Growth Regul 56:97–106

    Article  CAS  Google Scholar 

  29. Tsugeki R, Mori H, Nishimura M (1992) Purification, cDNA cloning and Northern-blot analysis of mitochondrial chaperonin 60 from pumpkin cotyledons. Eur J Biochem 209:453–458

    Article  CAS  PubMed  Google Scholar 

  30. Nagata T, Nemoto Y, Hasezawa S (1992) Tobacco BY-2 cells as the “HeLa” cells in the cell biology of higher plants. Int Rev Cytol 132:1–30

    Article  CAS  Google Scholar 

  31. Seals DF, Randall SK (1999) Sequence analysis of a vacuole-associated annexin from tobacco. Plant Physiol 119:1147

    Article  Google Scholar 

  32. Proust J, Houlné G, Schantz ML, Shen WH, Schantz R (1999) Regulation of biosynthesis and cellular localization of Sp32 annexins in tobacco BY2 cells. Plant Mol Biol 39:361–372

    Article  CAS  PubMed  Google Scholar 

  33. Gerke V, Moss SE (2002) Annexins: from structure to function. Physiol Rev 82:331–371

    Article  CAS  PubMed  Google Scholar 

  34. Delmer DP, Potikha TS (1997) Structures and functions of annexins in plants. Cell Mol Life Sci 53:546–553

    Article  CAS  PubMed  Google Scholar 

  35. Richards SL, Laohavisit A, Mortimer JC, Shabala L, Swarbreck SM, Shabala S, Davies JM (2014) Annexin 1 regulates the H2O2-induced calcium signature in Arabidopsis thaliana roots. Plant J 77:136–145

    Article  CAS  PubMed  Google Scholar 

  36. Bageshwar UK, Taneja-Bageshwar S, Moharram HM, Binzel ML (2005) Two isoforms of the A subunit of the vacuolar H+-ATPase in Lycopersicon esculentum: highly similar proteins but divergent patterns of tissue localization. Planta 220:632–643

    Article  CAS  PubMed  Google Scholar 

  37. Kwade Z, Swiatek A, Azmi A, Goossens A, Inzé D, Van Onckelen H, Roef L (2005) Identification of four adenosine kinase isoforms in tobacco BY-2 cells and their putative role in the cell cycle-regulated cytokinin metabolism. J Biol Chem 280:17512–17519

    Article  CAS  PubMed  Google Scholar 

  38. Chaumont F, Boutry M, Briquet M, Vassarotti A (1988) Sequence of the gene encoding the mitochondrial F1-ATPase α subunit from Nicotiana plumbaginifolia. Nucleic Acids Res 16:6247

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Monie TP, Perrin AJ, Birtley JR, Sweeney TR, Karakasiliotis I, Chaudhry Y, Roberts LO, Matthews S, Goodfellow IG, Curry S (2007) Structural insights into the transcriptional and translational roles of Ebp1. EMBO J 26:3936–3944

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Horvath BM, Magyar Z, ZhangY Hamburger AW, Bako L, Visser RG, Bachem CW, Bogre L (2006) EBP1 regulates organ size through cell growth and proliferation in plants. EMBO J 25:4909–4920

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Kumagai F, Hasegawa S, Yohsuke T, Nagata T (1995) The involvement of protein synthesis elongation factor 1α in the perinuclear region during the cell cycle transition from M to G1 phase in tobacco BY-2 cells. Bot Acta 108:467–473

    Article  CAS  Google Scholar 

  42. Yasuda H, Kanda K, Koiwa H, Suenaga K, Kidou S, Ejiri S (2005) Localization of actin filaments on mitotic apparatus in tobacco BY-2 cells. Planta 222:118–129

    Article  CAS  PubMed  Google Scholar 

  43. Florea CS, Timko MP (1997) Actin genes with unusual organization in the parasitic angiosperm Striga asiatica L. (Kuntz). Gene 186:127–133

    Article  CAS  PubMed  Google Scholar 

  44. Wang F, Dong L, Yuan J-J (2007) Molecular cloning and expression analysis of an actin gene from Glycyrrhiza uralensis Fisch. Chem Res Chines Univ 25:357–361

    Google Scholar 

  45. Davies E, Stankovic B, Azama K, Shibata K, Abe S (2001) Novel components of the plant cytoskeleton: a bringing to plant “cytomics”. Plant Sci 160:185–196

    Article  CAS  PubMed  Google Scholar 

  46. Prasad TK, Stewart CR (1992) cDNA clones encoding Arabidopsis thaliana and Zea mays mitochondrial chaperonin HSP60 and gene expression during seed germination and heat shock. Plant Mol Biol 18:873–885

    Article  CAS  PubMed  Google Scholar 

  47. Sternlicht H, Farr GW, Sternlicht ML, Driscoll JK, Willison K, Yaffe MB (1993) The t-complex polypeptide 1 complex is a chaperonin for tubulin and actin in vivo. Proc Natl Acad Sci USA 90:9422–9426

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Merrick WC, Hershey JWB (1996) The pathway and mechanism of eukaryotic protein synthesis. In: Hershey JWB, Mathews MB, Sonenberg N (eds) Translational control. CSHL Press, Cold Spring Harbor Laboratory, pp 31–69

    Google Scholar 

  49. Le H, Gallie DR (2000) Sequence diversity and conservation of the poly(A)-binding protein in plants. Plant Sci 152:101–114

    Article  CAS  Google Scholar 

  50. Le H, Chang SC, Tanguay RL, Gallie DR (1997) The wheat poly(A)-binding protein functionally complements pab1 in yeast. Eur J Biochem 243:350–357

    Article  CAS  PubMed  Google Scholar 

  51. Miyazawa Y, Sakai A, Kawano S, Kuroiwa T (2001) Differential regulation of starch synthesis gene expression during amyloplast development in cultured tobacco BY-2 cells. J Plant Physiol 158:1077–1084

    Article  CAS  Google Scholar 

  52. Miyazawa Y, Sakai A, Miyagishima S, Takano H, Kawano S, Kuroiwa T (1999) Auxin and cytokinin have opposite effects on amyloplast development and the expression of starch synthesis genes in cultured bright yellow-2 tobacco cells. Plant Physiol 121:461–469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Rao SK, Bringloe DH, Raines CA, Bradbeer JW (1995) Sequence of cDNAs encoding the chloroplastic and cytosolic phophoglycerate kinases (Genbank Z489776 and Z48977) from tobacco. Plant Physiol 109:1126

    Google Scholar 

  54. Troncoso-Ponce MA, Rivoal J, Venegas-Calerón M, Dorion S, Sánchez R, Cejudo FJ, Garcés R, Martínez-Force E (2012) Molecular cloning and biochemical characterization of three phosphoglycerate kinase isoforms from developing sunflower (Helianthus annuus L.) seeds. Phytochemistry 79:27–38

    Article  CAS  PubMed  Google Scholar 

  55. Van der Straeten D, Rodrigues-Pousada RA, Goodman HM, Van Montagu M (1991) Plant enolase: gene structure, expression and evolution. Plant Cell 3:719–735

    Article  PubMed Central  PubMed  Google Scholar 

  56. Kosová K, Vítámvás P, Prášil IT, Renaut J (2011) Plant proteome changes under abiotic stress—contribution of proteomics studies to understanding plant stress response. J Proteomics 74:1301–1322

    Article  PubMed  Google Scholar 

  57. Mølhøj M, Verma R, Reiter WD (2008) The biosynthesis of the branched-chain sugar d-apiose in plants: functional cloning and characterization of a UDP-d-apiose/UDP-d-xylose synthase from Arabidopsis. Plant J 35:693–703

    Article  Google Scholar 

  58. Ahn JW, Verma R, Kim M, Lee JY, Kim YK, Bang JW, Reiter WD, Pai HS (2006) Depletion of UDP-d-apiose/UDP-d-xylose synthases results in rhamnogalacturonan-II deficiency, cell wall thickening, and cell death in higher plants. J Biol Chem 281:13708–13716

    Article  CAS  PubMed  Google Scholar 

  59. Bubner B, Gase K, Baldwin IT (2004) Two-fold differences are the detection limit for determining transgene copy numbers in plants by real-time PCR. BMC Biotechnol 2004:14. doi:10.1186/1472-6750-4-14

    Article  Google Scholar 

  60. Miflin BJ, Habash DZ (2002) The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. J Exp Bot 53:979–987

    Article  CAS  PubMed  Google Scholar 

  61. Parra-Peralbo E, Pineda M, Aguilar M (2009) PVAS3, a class-II ubiquitous asparagine synthetase from the common bean (Phaseolus vulgaris). Mol Biol Rep 36:2249–2258

    Article  CAS  PubMed  Google Scholar 

  62. Kang J-H, Wang L, Giri A, Baldwin IT (2006) Silencing threonine deaminase and JAR4 in Nicotiana attenuata impairs jasmonic acid-isoleucine-mediated defenses against Manduca sexta. Plant Cell 18:3303–3320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Chen M-S (2008) Inducible plant defense against insect herbivores/A review. Insect Sci 15:101–114

    Article  Google Scholar 

  64. Espartero J, Pintor-Toro JA, Pardo JM (1994) Differential accumulation of S-adenosylmethionine synthetase transcripts in response to salt stress. Plant Mol Biol 25:217–227

    Article  CAS  PubMed  Google Scholar 

  65. Benveniste P (2004) Biosynthesis and accumulation of sterols. Annu Rev Plant Biol 55:429–457

    Article  CAS  PubMed  Google Scholar 

  66. Nes WD (2011) Biosynthesis of cholesterol and other sterols. Chem Rev 111:6423–6451

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Haubrich BA, Collins EK, Howard AL, Wang Q, Snell WJ, Miller MB, Thomas CD, Pleasant SK, Nes WD (2015) Characterization, mutagenesis and mechanistic analysis of an ancient algal sterol C24-methyltransferase: implications for understanding sterol evolution in the green lineage. Phytochemistry 113:64–72

    Article  CAS  PubMed  Google Scholar 

  68. Henli K, Demura T, Tsuboi S, Fukuda H, Iwabuchi M, Ogawa K (2005) Change in the redox state of glutathione regulates differentiation of tracheary elements in Zinnia cells and Arabidopsis roots. Plant Cell Physiol 46:1757–1765

    Article  Google Scholar 

  69. Wingler A, Lea PJ, Quick WP, Leegood RC (2000) Photorespiration: metabolic pathways and their role in stress protection. Phil Transact Roy Soc B Biol Sci 355:1517–1529

    Article  CAS  Google Scholar 

  70. Grantz AA, Brummell DA, Bennet AB (1995) Ascorbate free radical reductase mRNA levels are induced by wounding. Plant Physiol 108:411–418

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Leterrier M, Corpas FJ, Barroso JB, Sandalio LM, del Río LA (2005) Peroxisomal monodehydroascorbate reductase. Genomic clone characterization and functional analysis under environmental stress conditions. Plant Physiol 138:2111–2123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Emmermann M, Braun HP, Arretz M, Schmitz UK (1993) Characterization of the bifunctional cytochrome c reductase-processing peptidase complex from potato mitochondria. J Biol Chem 268:18936–18942

    CAS  PubMed  Google Scholar 

  73. Gakh O, Cavadini P, Isaya G (2002) Mitochondrial processing peptidases. BBA Mol Cell Res 1592:63–77

    CAS  Google Scholar 

  74. Lu DP, Christopher DA (2008) Endoplasmic reticulum stress activates the expression of a sub-group of protein disulfide isomerase genes and AtbZIP60 modulates the response of Arabidopsis thaliana. Mol Genet Genomics 280:199–210

    Article  CAS  PubMed  Google Scholar 

  75. He Y, Chen B, Pang Q, Strul JM, Chen S (2010) Functional specification of Arabidopsis isopropylmalate isomerases in glucosinolate and leucine biosynthesis. Plant Cell Physiol 51:1480–1487

    Article  CAS  PubMed  Google Scholar 

  76. Hemmerlin A, Hoeffler JF, Meyer O, Tritsch D, Kagan IA, Grosdemange-Billiard C, Rohmer M, Bach TJ (2003) Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells. J Biol Chem 278:26666–26676

    Article  CAS  PubMed  Google Scholar 

  77. Heintz D, Gallien S, Compagnon V, Berna A, Suzuki M, Yoshida S, Muranaka T, Van Dorsselaer A, Schaeffer C, Bach TJ, Schaller H (2012) Phosphoproteome exploration reveals a reformatting of cellular processes in response to low sterol biosynthetic capacity in Arabidopsis. J Proteome Res 11:1228–1239

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Bach.

Additional information

G. J. Schroepfer, Jr. Memorial Sterol Symposium.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11745_2015_4041_MOESM1_ESM.tif

Fig. S1. Protein category and enriched cellular processes. Identified proteins have been distributed into 7 major categories (and 5 minor categories), depending on the cellular processes to which are more likely to be involved. Values represent  the percentage of proteins in each category vs the total number of proteins identified.(TIFF 51 kb)

11745_2015_4041_MOESM2_ESM.xlsx

Table S1: Identified proteins, selected peptide sequences, protein coverage and spectral information based on Mascot MS/MS dataset. Information provided in this table complements Table 1. Up to 25 peptides were identified from each spot. Predicted proteins represented by less than 3 peptides were discarded. Only the first peptide for each identified protein is shown. (XLSX 25 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gas-Pascual, E., Simonovik, B., Heintz, D. et al. Inhibition of Cycloartenol Synthase (CAS) Function in Tobacco BY-2 Cell Suspensions: A Proteomic Analysis. Lipids 50, 773–784 (2015). https://doi.org/10.1007/s11745-015-4041-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-015-4041-9

Keywords

Navigation