Skip to main content
Log in

Differential accumulation of S-adenosylmethionine synthetase transcripts in response to salt stress

  • Research Articles
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

NaCl stress causes the accumulation of several mRNAs in tomato seedlings. An upregulated cDNA clone, SAM1, was found to encode a S-adenosyl-L-methionine synthetase enzyme (AdoMet synthetase). Expression of the cDNA SAM1 in a yeast mutant lacking functional SAM genes resulted in high AdoMet synthetase activity and AdoMet accumulation. We show that tomato plants contain at least four SAM isogenes. Clones corresponding to isogenes SAM2 and SAM3 have also been isolated and sequenced. they encode predicted polypeptides 95% and 92% identical, respectively, to the SAM1-encoded AdoMet Synthetase. RNA hybridization analysis showed a differential response of SAM genes to salt and other stress treatments. SAM1 and SAM3 mRNAs accumulated in the root in response to NaCl, mannitol or ABA treatments. SAM1 mRNA accumulated also in leaf tissue. These increases of mRNA level were apparent as soon as 8 h after the initiation of the salt treatment and were maintained for at least 3 days. A possible role for AdoMet synthetases in the adaptation to salt stress is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azaizeh H, Steudle E: Effects of salinity on water transport of excised maize (Zea mays L.) roots. Plant Physiol 97: 1136–1145 (1991).

    Google Scholar 

  2. Bozarth CS, Boyer JS: Cell wall proteins at low water potentials. Plant Physiol 85: 261–267 (1987).

    Google Scholar 

  3. Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254 (1976).

    Article  PubMed  Google Scholar 

  4. Gassab GI, Varner JE: Cell wall proteins. Annu Rev Plant Physiol Plant Mol Biol 39: 321–353 (1988).

    Article  Google Scholar 

  5. Cherest H, Surdin-Kerjan Y, Antoniewski J, Robinson-Szulmajster H: S-adenosyl methionine-mediated repression of methionine biosynthetic enzymes in Saccharomyces cerevisiae. J Bact 114: 928–933 (1973).

    PubMed  Google Scholar 

  6. Chou TC, Lombardini JB: A rapid assay procedure for ATP:L-methionine adenosyl transferase. Biochim Biophys Acta 276: 399–406 (1972).

    PubMed  Google Scholar 

  7. Creelman RA, Mullet JE: Water deficit modulates gene expression in growing zones of soybean seedlings. Analysis of differentially expressed cDNAs, a new β-tubulin gene, and expression of genes encoding cell wall proteins. Plant Mol Biol 17: 591–608 (1991).

    PubMed  Google Scholar 

  8. Cruz RT, Jordan WR, Drew MC: Structural changes and associated reduction of hydraulic conductance in roots of Sorghum bicolor L. following exposure to water deficit. Plant Physiol 99: 203–212 (1992).

    Google Scholar 

  9. Cushman JC, Meyer G, Michalowski CB, Schmitt JM, Bohnert HJ: Salt stress leads to differential expression of two isogenes of phosphoenolpyruvate carboxylase during crassulacean acid metabolism induction in the common ice plant. Plant Cell 1: 715–725 (1989).

    Article  PubMed  Google Scholar 

  10. Delcasso-Tremousaygue D, Grellet F, Panabieres F, Ananiev ED, Delseny M: Structural and transcriptional characterization of the external spacer of a ribosomal RNA nuclear gene from a higher plants. Eur J Biochem 172: 767–776 (1988).

    PubMed  Google Scholar 

  11. Devereux J, Haeberli P, Smithies O: A comprehensive set of sequence analysis programs for the VAX. Nucl Acids Res 12: 387–395 (1984).

    PubMed  Google Scholar 

  12. Giovanelli J, Mudd SH, Datko AH: Sulfur amino acids in plants. In: Miflin BJ (ed) The Biochemistry of Plants: A Comprehensive Treatise, vol. 5, Amino Acids and Derivatives, pp. 453–505. Academic Press, New York (1980).

    Google Scholar 

  13. Godoy JA, Pardo JM, Pintor-Toro JA: A tomato cDNA inducible by salt stress and abscisic acid: nucleotide sequence and expression pattern. Plant Mol Biol 15: 695–705 (1990).

    Article  PubMed  Google Scholar 

  14. Gowri G, Bugos RC, Campbell WH, Maxwell CA, Dixon RA: Stress responses in Alfalfa (Medicago sativa L.). Molecular cloning and expression of S-adenosyl-L-methion-ine: caffeic acid 3-O-methyltransferase, a key enzyme in lignin biosynthesis. Plant Physiol 97: 7–14 (1991).

    Google Scholar 

  15. Hall TC, Ma Y, Buchbinder BU, Pyne JW, Sun SM, Bliss FA: Messenger RNA for G1 protein of french bean seeds: cell-free translation and product characterization. Proc Natl Acad Sci USA 75: 3196–3200 (1978).

    Google Scholar 

  16. Higuchi T: Biosynthesis of lignin. In: Tanner W, Loewus FA (eds) Plant Carbohydrates II. Encyclopedia of Plant Physiology, New Series Vol 13B, pp. 194–224. Springer-Verlag, Berlin (1981).

    Google Scholar 

  17. Hill JE, Myers AM, Koerner TJ, Tzagoloff A: Yeast/ E. coli shuttle vectors with multiple unique restriction sites. Yeast 2: 163–167 (1986).

    PubMed  Google Scholar 

  18. Ho TY, Mishkind ML: The influence of water deficits on mRNA levels in tomato. Plant Cell Envir 14: 67–75 (1991).

    Google Scholar 

  19. Horikawa S, Sasuga J, Shimizu K, Ozasa H, Tsukada K: Molecular cloning and nucleotide sequence of cDNA encoding the rat kidney S-adenosylmenthionine synthetase. J Biol Chem 265: 13683–13686 (1990).

    PubMed  Google Scholar 

  20. Horikawa S, Tsukada K: Molecular cloning and nucleotide sequence of cDNA encoding the human liver S-adenosylmethionine synthetase. Biochem Int 25: 81–90 (1991).

    PubMed  Google Scholar 

  21. Hu CA, Delauney AJ, Delauney AJ, Verma DPS: A bifunctional enzyme (Δ-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. Proc Natl Acad Sci USA 89: 9354–9358 (1992).

    PubMed  Google Scholar 

  22. Ito H, Fukuda I, Murata K, Kimura A: Transformation of intact yeast cells treated with alkali cations. J Bact 153: 163–168 (1983).

    PubMed  Google Scholar 

  23. Kawalleck P, Plesch G, Hahlbrock K, Somssich I: Induction by fungal elicitor of S-adenosyl-L-methionine synthetase and S-adenosyl-L-homocysteine hydrolase mRNAs in cultured cells and leaves of Petroselinum crispum. Proc Natl Acad Sci USA 89: 4713–4717 (1992).

    PubMed  Google Scholar 

  24. King GJ, Turner VA, Hussey CE, Wurtele ES, Lee SM: Isolation and characterization of a tomato cDNA clone which codes for a salt-induced protein. Plant Mol Biol 10: 401–412 (1988).

    Google Scholar 

  25. Larsen PB, Woodson WR: Cloning and nucleotide sequence of a S-adenosylmethionine synthetase cDNA from carnation. Plant Physiol 96: 997–999 (1991).

    Google Scholar 

  26. Markham JD, DeParasis J, Gatmaitan J: The sequence of MetK, the structural gene for S-adenosylmethionine synthetase in Escherichia coli. J Biol Chem 259: 14505–14507 (1984).

    PubMed  Google Scholar 

  27. Martinez-Force E, Benitez T: Separation of O-phthalaldehyde derivatives of amino acids of the internal pool of yeast by reverse-phase liquid chromatography. Biotechnol Tech 5: 209–214 (1991).

    Google Scholar 

  28. Mountain HA, Byström AS, Larsen JT, Korch C: Four major transcriptional responses in the methionine/ threonine biosynthetic pathway of Saccharomyces cerevisiae. Yeast 7: 781–803 (1991).

    PubMed  Google Scholar 

  29. Mundy J, Chua NH: Abscisic acid and water-stress induce the expression of a novel rice gene. EMBO J 7: 2279–2286 (1988).

    PubMed  Google Scholar 

  30. Narasimhan ML, Binzel ML, Perez-Prat E, Chen Z, Nelson DE, Singh NK, Bressan RA, Hasegawa PM: NaCL regulation of tonoplast ATPase 70-kilodalton subunit mRNA in tobacco cells. Plant Physiol 97: 562–658 (1991).

    Google Scholar 

  31. Nonami H, boyer JS: Wall extensibility and cell hydraulic conductivity decrease in enlarging stem tissues al low water potentials. Plant Physiol 93: 1610–1619 (1990).

    Google Scholar 

  32. Oliveira DE, Seurinck J, Inzé D, Van Montagu M, Botterman J: Differential expression of five Arabidopsis genes encoding glycine-rich proteins. Plant Cell 2: 427–436 (1990).

    Article  PubMed  Google Scholar 

  33. Peleman J, Boerjan W, Engler G, Seurinck J, Botterman J, Alliotte T, Van Montagu M, Inze D: Strong cellular preference in the expression of a housekeeping gene of Arabidopsis thaliana encoding S-adenosylmethionine synthetase. Plant Cell 1: 81–93 (1989).

    PubMed  Google Scholar 

  34. Peleman J, Saito H, Cottyn B, Engler G, Seurinck J, Van Montagu M, Inze D: Structure and expression analyses of the S-adenosylmethionine synthetase gene family in Arabidopsis thaliana. Gene 84: 359–369 (1989).

    Article  PubMed  Google Scholar 

  35. Perez-Prat E, Narasimhan ML, Binzel ML, Botella M, Chen Z, Valpuesta V, Bressan RA, Hasegawa PM: Induction of a putative Ca2+-ATPase mRNA in NaCl-adapted cells. Plant Physiol 100: 1471–1478 (1992).

    Google Scholar 

  36. Priebe A, Jäger HJ: Effect of NaCl on the levels of putrescine and related polyamines in plants differing in salt tolerance. Plant Sci Lett 12: 365–369 (1978).

    Google Scholar 

  37. Rothstein R: Cloning in yeast. In: Glover DM (ed) DNA cloning, vol. II, pp. 45–66. IRL Press, Oxford (1985).

    Google Scholar 

  38. Schwartz-Sommer Z, Gierl A, Cuypers H, Peterson PA, Saedler H: Plant transposable elements generate the DNA sequence diversity needed in evolution. EMBO J 4: 591–597 (1985).

    Google Scholar 

  39. Serrano R, Kielland-Brandt MC, Fink GR: Yeast plasma membrane ATPase is essential for growth and has homology with (Na+/K+), K+, and Ca2+-ATPases. Nature 319: 689–693 (1986).

    PubMed  Google Scholar 

  40. Singh NE, Handa AK, Hasegawa PM, Bressan RA: Proteins associated with adaptation of cultured tobacco cells to NaCl. Plant Physiol 79: 126–137 (1985).

    Google Scholar 

  41. Skriver K, Mundy J: Gene expression in response to abscisic acid and osmotic stress. Plant Cell 2: 503–512 (1990).

    Article  PubMed  Google Scholar 

  42. Tabor CW, Tabor H: Methionine adenosyltransferase (S-adenosylmethionine synthetase) and S-adenosylmethionine decarboxylase. Adv Enzymol 56: 251–282 (1984).

    PubMed  Google Scholar 

  43. Taylor B, Powell A: Isolation of plant DNA and RNA. Focus 4: 4–6 (1982).

    Google Scholar 

  44. Thomas D, Rothstein R, Rosenberg N, Surdin-Kerjan Y: SAM2 encodes the second methionine S-adenosyl transferase in Saccharomyces cerevisiae: physiology and regulation of both enzymes. Mol Cell Biol 8: 5132–5139 (1988).

    PubMed  Google Scholar 

  45. Thomas D, Surdin-Kerjan Y: The synthesis of the two S-adenosyl-methionine synthetases is differently regulated in Saccharomyces cerevisiae. Mol Gen Genet 226: 224–232 (1991).

    PubMed  Google Scholar 

  46. Tiburcio AF, Kaur-Sawhney R, Galston AW: Polyamine metabolism. In: Miflin BJ, Lea PJ (eds) The Biochemistry of Plants: A Comprehensive Treatise, vol. 16, Intermediary Nitrogen Metabolism, pp. 283–325. Academic Press, Orlando, FL (1990).

    Google Scholar 

  47. Vernon DM, Bohnert HJ: A novel methyl transferase induced by osmotic stress in the facultative halophyte Mesembryanthemum crystallinum. EMBO J 11: 2077–2085 (1992).

    PubMed  Google Scholar 

  48. Wimmers LE, Ewing NN, Bennett AB: Higher plant Ca2+-ATPase: primary structure and regulation of mRNA abundance by salt. Proc Natl Acad Sci USA 89: 9205–9209 (1992).

    PubMed  Google Scholar 

  49. Woodson WR, Park KY, Drory A, Larsen PB, Wang H: Expression of ethylene biosynthetic pathway transcripts in senescing carnation flowers. Plant Physiol 99: 526–532 (1992).

    Google Scholar 

  50. Yang SF, Hoffman NE: Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol 35: 155–189 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Espartero, J., Pintor-Toro, J.A. & Pardo, J.M. Differential accumulation of S-adenosylmethionine synthetase transcripts in response to salt stress. Plant Mol Biol 25, 217–227 (1994). https://doi.org/10.1007/BF00023239

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00023239

Key words

Navigation