Skip to main content
Log in

The trans-10,cis-15 18:2: a Missing Intermediate of trans-10 Shifted Rumen Biohydrogenation Pathway?

  • Original Article
  • Published:
Lipids

Abstract

The “trans-10 shifted” biohydrogenation pathway is frequently established in the rumen when high starch diets are fed to ruminants, resulting in the accumulation of trans-10 18:1 in ruminant products. It has been proposed that the “trans-10 shifted” biohydrogenation pathway of α-linolenic acid generates two intermediates, the trans-10,cis-15 18:2 and trans-10,cis-12,cis-15 18:3, although none of these have been found in the rumen. We analyzed digestive contents and meat samples from two trials, where animals were fed: a compound feed diet supplemented with 8 % oil blend containing linseed oil (samples A); and a forage based diet supplemented with 6 % linseed oil (samples B). The use of the new SLB-IL111 chromatographic column allowed the detection of two different 18:2 isomers in each sample trial, which could not be resolved when the CP-Sil 88 column is used. The two 18:2 isomers were characterized by mass spectrometry using 4,4-dimethyloxazoline derivatives. However, because they were subject to higher temperatures and present different chromatographic properties compared with the fatty acid methyl esters, we also used the “covalent adduct chemical ionization” technique to confirm the identity of both 18:2 isomers. We detected and identified the 10,15-18:2 in samples A and the 11,15-18:2 in samples B. The geometry of both isomers was tentatively assigned as trans,cis taking in account their elution order and biologic plausibility. As far as we know, this is the first time that the trans-10,cis-15 18:2 has been found in ruminant digestive contents and meat samples associated with the “trans-10 shifted” biohydrogenation pathway of α-linolenic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CACI:

Covalent adduct chemical ionization

CACIMS/MS:

Covalent adduct chemical ionization tandem mass spectrometry

CI:

Chemical ionization

DMOX:

4,4-Dimethyloxazoline

FAME:

Fatty acid methyl ester(s)

GC–MS:

Gas chromatography mass spectrometry

References

  1. Bessa RJB, Portugal PV, Mendes IA, Santos-Silva J (2005) Effect of lipid supplementation on growth performance, carcass and meat quality and fatty acid composition of intramuscular lipids of lambs fed dehydrated lucerne or concentrate. Livest Prod Sci 96:185–194. doi:10.1016/j.livprodsci.2005.01.017

    Article  Google Scholar 

  2. Griinari JM, Dwyer DA, McGuire MA, Bauman DE, Palmquist DL, Nurmela KVV (1998) Trans-octadecenoic acids and milk fat depression in lactating dairy cows. J Dairy Sci 81:1251–1261. doi:10.3168/jds.S0022-0302(98)75686-3

    Article  CAS  PubMed  Google Scholar 

  3. Aldai N, de Renobales M, Barron LJ, Kramer JKG (2013) What are the trans fatty acids issues in foods after discontinuation of industrially produced trans fats? Ruminant products, vegetable oils, and synthetic supplements. Eur J Lipid Sci Technol 115:1378–1401. doi:10.1002/ejlt.201300072

    Article  CAS  Google Scholar 

  4. Leat WMF, Kemp P, Lysons RJ, Alexander TJL (1977) Fatty-acid composition of depot fats from gnotobiotic lambs. J Agric Sci 88:175–179

    Article  Google Scholar 

  5. Griinari JM, Bauman DE (1999) Biosynthesis of conjugated linoleic acid and its incorporation into meat and milk in ruminants. In: Yurawecz MP, Mossoba MM, Kramer JKG, Pariza MW, Nelson GJ (eds) Advances in conjugated linoleic acid research, vol 1. AOCS Press, Champaign, pp 180–200

    Google Scholar 

  6. McKain N, Shingfield KJ, Wallace RJ (2010) Metabolism of conjugated linoleic acids and 18:1 fatty acids by ruminal bacteria: products and mechanisms. Microbiol 156:579–588. doi:10.1099/mic.0.036442-0

    Article  CAS  Google Scholar 

  7. Kishino S, Ogawa J, Yokozeki K, Shimizu S (2009) Metabolic diversity in biohydrogenation of polyunsaturated fatty acids by lactic acid bacteria involving conjugated fatty acid production. Appl Microbiol Biotechnol 84:87–97. doi:10.1007/s00253-009-1949-0

    Article  CAS  PubMed  Google Scholar 

  8. Kemp P, White RW, Lander DJ (1975) Hydrogenation of unsaturated fatty-acids by 5 bacterial isolates from sheep rumen, including a new species. J Gen Microbiol 90:100–114. doi:10.1099/00221287-90-1-100

    Article  CAS  PubMed  Google Scholar 

  9. Mohammed R, Kennelly JJ, Kramer JKG, Beauchemin KA, Stanton CS, Murphy JJ (2010) Effect of grain type and processing method on rumen fermentation and milk rumenic acid production. Animal 4:1425–1444. doi:10.1017/S175173111000039X

    Article  CAS  PubMed  Google Scholar 

  10. Alves SP, Santos-Silva J, Cabrita AR, Fonseca AJ, Bessa RJ (2013) Detailed dimethylacetal and fatty acid composition of rumen content from lambs fed lucerne or concentrate supplemented with soybean oil. PLoS One 8:e58386. doi:10.1371/journal.pone.0058386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Hristov AN, Kennington LR, McGuire MA, Hunt CW (2005) Effect of diets containing linoleic acid- or oleic acid-rich oils on ruminal fermentation and nutrient digestibility, and performance and fatty acid composition of adipose and muscle tissues of finishing cattle. J Anim Sci 83:1312–1321

    CAS  PubMed  Google Scholar 

  12. Aldai N, Dugan M, Kramer J, Martinez A, Lopez-Campos O, Mantecon A, Osoro K (2011) Length of concentrate finishing affects the fatty acid composition of grass-fed and genetically lean beef: an emphasis on trans-18:1 and conjugated linoleic acid profiles. Animal 5:1643–1652. doi:10.1017/S1751731111000607

    Article  CAS  PubMed  Google Scholar 

  13. Roy A, Ferlay A, Shingfield KJ, Chilliard Y (2006) Examination of the persistency of milk fatty acid composition responses to plant oils in cows given different basal diets, with particular emphasis on trans-C-18: 1 fatty acids and isomers of conjugated linoleic acid. Anim Sci 82:479–492. doi:10.1079/ASC200658

    Article  CAS  Google Scholar 

  14. Shingfield KJ, Reynolds CK, Lupoli B, Toivonen V, Yurawecz MP, Delmonte P, Griinari JM, Grandison AS, Beever DE (2005) Effect of forage type and proportion of concentrate in the diet on milk fatty acid composition in cows given sunflower oil and fish oil. Anim Sci 80:225–238. doi:10.1079/ASC41820225

    Article  CAS  Google Scholar 

  15. Gomez-Cortes P, Frutos P, Mantecon A, Juarez M, de la Fuente MA, Hervas G (2008) Addition of olive oil to dairy ewe diets: effect on milk fatty acid profile and animal performance. J Dairy Sci 91:3119–3127. doi:10.3168/jds.2007-0954

    Article  CAS  PubMed  Google Scholar 

  16. Hoffmann G, Meijboom PW (1969) Identification of 11,15-octadecadienoic acid from beef and mutton tallow. JAOCS 46:620–622. doi:10.1007/BF02544981

    CAS  Google Scholar 

  17. Harfoot CG, Hazlewood GP (1997) Lipid metabolism in the rumen. In: Hobson PN, Stewart CS (eds) The rumen microbial ecosystem. Springer, Netherlands, pp 382–426. doi:10.1007/978-94-009-1453-7

  18. Loor JJ, Ueda K, Ferlay A, Chilliard Y, Doreau M (2004) Biohydrogenation, duodenal flow, and intestinal digestibility of trans fatty acids and conjugated linoleic acids in response to dietary forage:concentrate ratio and linseed oil in dairy cows. J Dairy Sci 87:2472–2485. doi:10.3168/jds.S0022-0302(04)73372-X

    Article  CAS  PubMed  Google Scholar 

  19. Shingfield KJ, Lee MRF, Humphries DJ, Scollan ND, Toivonen V, Beever DE, Reynolds CK (2011) Effect of linseed oil and fish oil alone or as an equal mixture on ruminal fatty acid metabolism in growing steers fed maize silage-based diets. J Anim Sci 89:3728–3741. doi:10.2527/jas.2011-4047

    Article  CAS  PubMed  Google Scholar 

  20. Jeronimo E, Alves SP, Alfaia CM, Prates JAM, Santos-Silva J, Bessa RJB (2011) Biohydrogenation intermediates are differentially deposited between polar and neutral intramuscular lipids of lambs. Eur J Lipid Sci Technol 113:924–934. doi:10.1002/ejlt.201000398

    Article  CAS  Google Scholar 

  21. Rego OA, Alves SP, Antunes LMS, Rosa HJD, Alfaia CFM, Prates JAM, Cabrita ARJ, Fonseca AJM, Bessa RJB (2009) Rumen biohydrogenation-derived fatty acids in milk fat from grazing dairy cows supplemented with rapeseed, sunflower, or linseed oils. J Dairy Sci 92:4530–4540. doi:10.3168/jds.2009-2060

    Article  CAS  PubMed  Google Scholar 

  22. Chilliard Y, Martin C, Rouel J, Doreau M (2009) Milk fatty acids in dairy cows fed whole crude linseed, extruded linseed, or linseed oil, and their relationship with methane output. J Dairy Sci 92:5199–5211. doi:10.3168/jds.2009-2375

    Article  CAS  PubMed  Google Scholar 

  23. Zened A, Troegeler-Meynadier A, Nicot M, Combes S, Cauquil L, Farizon Y, Enjalbert F (2011) Starch and oil in the donor cow diet and starch in substrate differently affect the in vitro ruminal biohydrogenation of linoleic and linolenic acids. J Dairy Sci 94:5634–5645. doi:10.3168/jds.2011-4491

    Article  CAS  PubMed  Google Scholar 

  24. Delmonte P, Fardin Kia AR, Kramer JKG, Mossoba MM, Sidisky L, Rader JI (2011) Separation characteristics of fatty acid methyl esters using SLB-IL111, a new ionic liquid coated capillary gas chromatographic column. J Chromatogr A 1218:545–554. doi:10.1016/j.chroma.2010.11.072

    Article  CAS  PubMed  Google Scholar 

  25. Delmonte P, Fardin-Kia AR, Kramer JKG, Mossoba MM, Sidisky L, Tyburczy C, Rader JI (2012) Evaluation of highly polar ionic liquid gas chromatographic column for the determination of the fatty acids in milk fat. J Chromatogr A 1233:137–146. doi:10.1016/j.chroma.2012.02.012

    Article  CAS  PubMed  Google Scholar 

  26. Turner T, Rolland D, Aldai N, Dugan M (2011) Short communication: rapid separation of cis9,trans11- and trans7,cis9-18:2 (CLA) isomers from ruminant tissue using a 30 m SLB-IL111 ionic column. Can J Anim Sci 91:711–713. doi:10.4141/CJAS2011-071

    Article  CAS  Google Scholar 

  27. Destaillats F, Guitard M, Cruz-Hernandez C (2011) Identification of delta 6-monounsaturated fatty acids in human hair and nail samples by gas-chromatography-mass-spectrometry using ionic-liquid coated capillary column. J Chromatogr A 1218:9384–9389. doi:10.1016/j.chroma.2011.10.095

    Article  CAS  PubMed  Google Scholar 

  28. Jeronimo E, Alves SP, Prates JAM, Santos-Silva J, Bessa RJB (2009) Effect of dietary replacement of sunflower oil with linseed oil on intramuscular fatty acids of lamb meat. Meat Sci 83:499–505. doi:10.1016/j.meatsci.2009.06.033

    Article  CAS  PubMed  Google Scholar 

  29. Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  30. Alves SP, Bessa RJB (2009) Comparison of two gas-liquid chromatograph columns for the analysis of fatty acids in ruminant meat. J Chromatogr A 1216:5130–5139. doi:10.1016/j.chroma.2009.04.079

    Article  CAS  PubMed  Google Scholar 

  31. Alves SP, Bessa RJB (2007) Identification of cis-12,cis-15 octadecadienoic acid and other minor polyenoic fatty acids in ruminant fat. Eur J Lipid Sci Technol 109:879–883. doi:10.1002/ejlt.200700035

    Article  CAS  Google Scholar 

  32. Michaud AL, Yurawecz MP, Delmonte P, Corl BA, Bauman DE, Brenna JT (2003) Identification and characterization of conjugated fatty acid methyl esters of mixed double bond geometry by acetonitrile chemical ionization tandem mass spectrometry. Anal Chem 75:4925–4930. doi:10.1021/ac034221

    Article  CAS  PubMed  Google Scholar 

  33. Ratnayake WMN, Hansen SL, Kennedy MP (2006) Evaluation of the CP-Sil 88 and SP-2560 GC columns used in the recently approved AOCS official method Ce 1 h-05: determination of cis-, trans-, saturated, monounsaturated, and polyunsaturated fatty acids in vegetable or non-ruminant animal oils and fats by capillary GLC method. J Am Oil Chem Soc 83:475–488. doi:10.1007/s11746-006-1230-y

    Article  CAS  Google Scholar 

  34. Wolff RL, Bayard CC (1995) Improvement in the resolution of individual trans-18:1 isomers by capillary gas-liquid-chromatography—use of a 100-m CP-Sil-88 column. J Am Oil Chem Soc 72:1197–1201

    Article  CAS  Google Scholar 

  35. Kramer JKG, Blackadar CB, Zhou J (2002) Evaluation of two GC columns (60-m SUPELCOWAX 10 and 100-m CP Sil 88) for analysis of milk fat with emphasis on CLA, 18:1, 18:2 and 18:3 isomers, and short- and long-chain FA. Lipids 37:823–835. doi:10.1007/s11745-002-0967-2

    Article  CAS  PubMed  Google Scholar 

  36. Santercole V, Delmonte P, Kramer J (2012) Comparison of separations of fatty acids from fish products using a 30-m supelcowax-10 and a 100-m SP-2560 column. Lipids 47:329–344. doi:10.1007/s11745-011-3645-y

    Article  CAS  PubMed  Google Scholar 

  37. Santercole V, Mazzette R, De Santis EPL, Banni S, Goonewardene L, Kramer JKG (2007) Total lipids of sarda sheep meat that include the fatty acid and alkenyl composition and the CLA and trans-18: 1 isomers. Lipids 42:361–382. doi:10.1007/s11745-006-3003-7

    Article  CAS  PubMed  Google Scholar 

  38. Kraft J, Kramer JKG, Schoene F, Chambers JR, Jahreis G (2008) Extensive analysis of long-chain polyunsaturated fatty acids, CLA, trans-18: 1 isomers, and plasmalogenic lipids in different retail beef types. J Agric Food Chem 56:4775–4782. doi:10.1021/jf8001813

    Article  CAS  PubMed  Google Scholar 

  39. Kairenius P, Toivonen V, Shingfield K (2011) Identification and ruminal outflow of long-chain fatty acid biohydrogenation intermediates in cows fed diets containing fish oil. Lipids 46:587–606. doi:10.1007/s11745-011-3561-1

    Article  CAS  PubMed  Google Scholar 

  40. Payagala T, Zhang Y, Wanigasekara E, Huang K, Breitbach ZS, Sharma PS, Sidisky LM, Armstrong DW (2009) Trigonal tricationic ionic liquids: a generation of gas chromatographic stationary phases. Anal Chem 81:160–173. doi:10.1021/ac8016949

    Article  CAS  PubMed  Google Scholar 

  41. Sidisky LM, Buchanan MD, Ferrari R (2011) Detailed analysis of C18:1 cis/trans FAME isomers using a highly polar ionic liquid capillary column, SLB-IL111. Agro Food Ind Hi Tech 22:30–32

    Google Scholar 

  42. Tyburczy C, Delmonte P, Fardin-Kia AR, Mossoba MM, Kramer JK, Rader JI (2012) Profile of trans fatty acids (FAs) including trans polyunsaturated FAs in representative fast food samples. J Agric Food Chem 60:4567–4577. doi:10.1021/jf300585s

    Article  CAS  PubMed  Google Scholar 

  43. Fardin-Kia AR, Delmonte P, Kramer JK, Jahreis G, Kuhnt K, Santercole V, Rader JI (2013) Separation of the fatty acids in menhaden oil as methyl esters with a highly polar ionic liquid gas chromatographic column and identification by time of flight mass spectrometry. Lipids 48:1279–1295. doi:10.1007/s11745-013-3830-2

    Article  CAS  PubMed  Google Scholar 

  44. Precht D, Molkentin J (2003) Overestimation of linoleic acid and trans-C18: 2 isomers in milk fats with emphasis on trans Delta 9, trans Delta 12-octadecadienoic acid. Milk Sci Int 58:30–34

    CAS  Google Scholar 

  45. Kramer JKG, Hernandez M, Cruz-Hernandez C, Kraft J, Dugan MER (2008) Combining results of two GC separations partly achieves determination of all cis and trans 16:1, 18:1, 18:2 and 18:3 except CLA isomers of milk fat as demonstrated using Ag-ion SPE fractionation. Lipids 43:259–273. doi:10.1007/s11745-007-3143-4

    Article  CAS  PubMed  Google Scholar 

  46. Ratnayake WMN, Plouffe LJ, Pasquier E, Gagnon C (2002) Temperature-sensitive resolution of cis- and trans-fatty acid isomers of partially hydrogenated vegetable oils on SP-2560 and CP-Sil 88 capillary columns. J AOAC Int 85:1112–1118

    CAS  PubMed  Google Scholar 

  47. Spitzer V, Marx F, Pfeilsticker K (1994) Electron-impact mass-spectra of the oxazoline derivatives of some conjugated diene and triene C-18 fatty-acids. J Am Oil Chem Soc 71:873–876. doi:10.1007/BF02540465

    Article  CAS  Google Scholar 

  48. Christie WW, Robertson GW, McRoberts WC, Hamilton JTG (2000) Mass spectrometry of the 4,4-dimethyloxazoline derivatives of isomeric octadecenoates (monoenes). Eur J Lipid Sci Technol 102:23–29. doi:10.1002/(SICI)1438-9312(200001)102:1<23:AID-EJLT23>3.0.CO;2-R

    Google Scholar 

  49. Alves SP, Maia MRG, Bessa RJB, Fonseca AJM, Cabrita ARJ (2012) Identification of C18 intermediates formed during stearidonic acid biohydrogenation by rumen microorganisms in vitro. Lipids 47:171–183. doi:10.1007/s11745-011-3621-6

    Article  CAS  PubMed  Google Scholar 

  50. Spitzer V (1996) Structure analysis of fatty acids by gas chromatography low resolution electron impact mass spectrometry of their 4,4-dimethyloxazoline derivatives—a review. Prog Lipid Res 35:387–408. doi:10.1016/S0163-7827(96)00011-2

    Article  CAS  PubMed  Google Scholar 

  51. Nikolova D, Antonova D, Marekov I, Nikolova-Damyanova B (2006) Bis-methylene-interrupted octadecadienoic fatty acids in Bulgarian bovine butter fats. Eur J Lipid Sci Technol 108:212–217. doi:10.1002/200500297

    Article  CAS  Google Scholar 

  52. Michaud AL, Diau GY, Abril R, Brenna JT (2002) Double bond localization in minor homoallylic fatty acid methyl esters using acetonitrile chemical ionization tandem mass spectrometry. Anal Biochem 307:348–360. doi:10.1016/0003-2697(02)000374

    Article  CAS  PubMed  Google Scholar 

  53. Van Pelt CK, Brenna JT (1999) Acetonitrile chemical ionization tandem mass spectrometry to locate double bonds in polyunsaturated fatty acid methyl esters. Anal Chem 71:1981–1989. doi:10.1021/981387667

    Article  PubMed  Google Scholar 

  54. Gomez-Cortes P, Tyburczy C, Brenna JT, Juarez M, de la Fuente MA (2009) Characterization of cis-9 trans-11 trans-15 C18:3 in milk fat by GC and covalent adduct chemical ionization tandem MS. J Lipid Res 50:2412–2420. doi:10.1194/jlr.M800662-JLR200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Alves SP, Cabrita ARJ, Jerónimo E, Bessa RJB, Fonseca AJM (2011) Effect of ensiling and silage additives on fatty acid composition of ryegrass and corn experimental silages. J Anim Sci 89:2537–2545. doi:10.2527/2010312867422

    Article  CAS  PubMed  Google Scholar 

  56. Ratnayake WMN, Pelletier G (1992) Positional and geometrical-isomers of linoleic acid in partially hydrogenated oils. J Am Oil Chem Soc 69:95–105. doi:10.1007/BF02540557

    Article  CAS  Google Scholar 

  57. Wolff RL, Nour M, Bayard CC (1996) Participation of the cis-12 ethylenic bond to cis-trans isomerization of the cis-9 and cis-15 ethylenic bonds in heated alpha-linolenic acid. JAOCS 73:327–332. doi:10.1007/BF02523426

    CAS  Google Scholar 

  58. Destaillats F, Trottier JP, Galvez JMG, and Angers P (2005) Analysis of alpha-linolenic acid biohydrogenation intermediates in milk fat with emphasis on conjugated linolenic acids. J Dairy Sci 88:3231-3239. DOI 10.3168/jds.S0022-0302(05)73006-X

    Google Scholar 

  59. Lourenco M, Ramos-Morales E, Wallace RJ (2010) The role of microbes in rumen lipolysis and biohydrogenation and their manipulation. Animal 4:1008–1686. doi:10.1017/S175173111000042X 1023

    Article  CAS  PubMed  Google Scholar 

  60. Harvatine K, Boisclair Y, Bauman D (2009) Recent advances in the regulation of milk fat synthesis. Animal 3:40–54. doi:10.1017/S1751731108003133

    Article  CAS  PubMed  Google Scholar 

  61. Aldai N, Dugan M, Rolland D, Kramer J (2009) Survey of the fatty acid composition of Canadian beef: backfat and longissimus lumborum muscle. Can J Anim Sci 89:315–329. doi:10.4141/CJAS08126

    Article  CAS  Google Scholar 

  62. Alfaia CP, Alves SP, Martins SIV, Costa AS, Fontes CM, Lemos JP, Bessa RJ, Prates JA (2009) Effect of the feeding system on intramuscular fatty acids and conjugated linoleic acid isomers of beef cattle, with emphasis on their nutritional value and discriminatory ability. Food Chem 114:939–946. doi:10.1016/j.foodchem.2008.10.041

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Olga Moreira and Paula Portugal from INIAV for kindly allowing us to use the Varian Saturn 2200 equipment. SPA was supported by Fundação para a Ciência e a Tecnologia (FCT) through the grant SFRH/BPD/76836/2011. The work was also supported by FCT through grants PEst-OE/AGR/UI0276/2011 and PTDC/CVT/120122/2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana P. Alves.

About this article

Cite this article

Alves, S.P., Bessa, R.J.B. The trans-10,cis-15 18:2: a Missing Intermediate of trans-10 Shifted Rumen Biohydrogenation Pathway?. Lipids 49, 527–541 (2014). https://doi.org/10.1007/s11745-014-3897-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-014-3897-4

Keywords

Navigation