Skip to main content
Log in

Identification and Ruminal Outflow of Long-Chain Fatty Acid Biohydrogenation Intermediates in Cows Fed Diets Containing Fish Oil

  • Original Article
  • Published:
Lipids

Abstract

The abundance of 20- to 24-carbon fatty acids in omasal digesta of cows fed grass silage-based diets supplemented with 0 (Control) and 250 g/day of fish oil (FO) was examined to investigate the fate of long-chain unsaturated fatty acids in the rumen. Complimentary argentation thin-layer chromatography and gas-chromatography mass-spectrometry analysis of fatty acid methyl esters and corresponding 4,4-dimethyloxazoline derivatives prepared from fish oil and omasal digesta enabled the structure of novel 20- to 22-carbon fatty acids to be elucidated. Compared with the Control, the FO treatment resulted in the formation and accumulation of 27 novel 20- and 22-carbon biohydrogenation intermediates containing at least one trans double bond and the appearance of cis-14 20:1, 20:2n-3, 21:4n-3 and 22:3n-6 not contained in fish oil. No conjugated ≥20-carbon fatty acids were detected in Control or FO digesta. In conclusion, fish oil in the diet results in the formation of numerous long-chain biohydrogenation intermediates in the rumen of lactating cows. Comparison of the intake and flow of 20-, 21- and 22-carbon fatty acids at the omasum in cows fed the Control and FO treatments suggests that the first committed steps of 20:5n-3, 21:5n-3 and 22:6n-3 hydrogenation in the rumen involve the reduction and/or isomerisation of double bonds closest to the carboxyl group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

DMOX:

4,4-Dimethyloxazoline

FAME:

Fatty acid methyl ester

GC:

Gas chromatography

GC–MS:

Gas chromatography–mass spectrometry

HPLC:

High-performance liquid chromatography

TLC:

Thin-layer chromatography

References

  1. World Health Organization (2003) Diet, nutrition and the prevention of chronic diseases. World Health Organ Tech Rep Ser 916:1–148

    Google Scholar 

  2. Wang C, Harris WS, Chung M, Lichtenstein AH, Balk EM, Kupelnick B, Jordan HS, Lau J (2006) n-3 Fatty acids from fish or fish-oil supplements, but not α-linolenic acid, benefit cardiovascular disease outcomes in primary- and secondary-prevention studies: a systematic review. Am J Clin Nutr 84:5–17

    PubMed  CAS  Google Scholar 

  3. Harris WS, Mozaffarian D, Lefevre M, Toner CD, Colombo J, Cunnane SC, Holden JM, Klurfeld DM, Morris MC, Whelan J (2009) Towards establishing dietary reference intakes for eicosapentaenoic and docosahexaenoic acids. J Nutr 139:804S–819S

    Article  PubMed  CAS  Google Scholar 

  4. Givens DI, Shingfield KJ (2006) Optimising dairy milk fatty acid composition. In: Williams C, Buttriss J (eds) Improving the fat content of foods. Woodhead, Cambridge, pp 252–280

    Chapter  Google Scholar 

  5. Scollan N, Hocquette J-F, Nuernberg K, Dannenberger D, Richardson I, Moloney A (2006) Innovations in beef production systems that enhance the nutritional and health value of beef lipids and their relationship with meat quality. Meat Sci 74:17–33

    Article  CAS  Google Scholar 

  6. Chilliard Y, Glasser F, Ferlay A (2007) Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. Eur J Lipid Sci Technol 109:828–855

    Article  CAS  Google Scholar 

  7. Shingfield KJ, Ahvenjärvi S, Toivonen V, Ärölä A, Nurmela KVV, Huhtanen P, Griinari JM (2003) Effect of dietary fish oil on biohydrogenation of fatty acids and milk fatty acid content in cows. Anim Sci 77:165–179

    CAS  Google Scholar 

  8. Lee MRF, Shingfield KJ, Tweed JKS, Toivonen V, Huws SA, Scollan ND (2008) Effect of fish oil on ruminal biohydrogenation of C18 unsaturated fatty acids in steers fed grass or red clover silages. Animal 2:1859–1869

    Article  CAS  Google Scholar 

  9. Shingfield KJ, Lee MRF, Humphries DJ, Scollan ND, Toivonen V, Reynolds CK, Beever DE (2010) Effect of incremental amounts of fish oil in the diet on ruminal lipid metabolism in growing steers. Br J Nutr 104:56–66

    Article  PubMed  CAS  Google Scholar 

  10. Dohme F, Fievez K, Raes K, Demeyer DI (2003) Increasing levels of two different fish oils lower ruminal biohydrogenation of eicosapentaenoic and docosahexaenoic acid in vitro. Anim Res 52:309–320

    Article  CAS  Google Scholar 

  11. AbuGhazaleh AA, Jenkins TC (2004) Disappearance of docosahexaenoic and eicosapentaenoic acids from cultures of mixed ruminal microorganisms. J Dairy Sci 87:645–651

    Article  PubMed  CAS  Google Scholar 

  12. Wąsowska I, Maia MRG, Niedźwiedzka KM, Czauderna M, Ribeiro JM, Ramalho C, Devillard E, Shingfield KJ, Wallace RJ (2006) Influence of fish oil on ruminal biohydrogenation of C18 unsaturated fatty acids. Br J Nutr 95:1199–1211

    Article  PubMed  Google Scholar 

  13. Kramer JKG, Fellner V, Dugan MER, Sauer FD, Mossoba MM, Yurawecz MP (1997) Evaluating acid and base catalysts in the methylation of milk and rumen fatty acids with special emphasis on conjugated dienes and total trans fatty acids. Lipids 32:1219–1228

    Article  PubMed  CAS  Google Scholar 

  14. Cruz-Hernandez C, Deng Z, Zhou J, Hill AR, Yurawecz MP, Delmonte P, Mossoba MM, Dugan MER, Kramer JKG (2004) Methods for analysis of conjugated linoleic acids and trans-18:1 isomers in dairy fats by using a combination of gas chromatography, silver-ion thin-layer chromatography/gas chromatography, and silver-ion liquid chromatography. JAOAC Int 87:545–562

    CAS  Google Scholar 

  15. Ratnayake WMN (2004) Overview of methods for the determination of trans fatty acids by gas chromatography, silver-ion thin-layer chromatography, silver-ion liquid chromatography, and gas chromatography/mass spectrometry. JAOAC Int 87:523–539

    CAS  Google Scholar 

  16. Kramer JKG, Hernandez M, Cruz-Hernandez C, Kraft J, Dugan MER (2008) Combining results of two GC separations partly achieves determination of all cis and trans 16:1, 18:1, 18:2 and 18:3 except CLA isomers of milk fat as demonstrated using Ag-ion SPE fractionation. Lipids 43:259–273

    Article  PubMed  CAS  Google Scholar 

  17. Radin NS (1981) Extraction of tissue lipids with a solvent of low toxicity. Methods Enzymol 72:5–8

    Article  PubMed  CAS  Google Scholar 

  18. Christie WW (1982) A simple procedure for rapid transmethylation of glycerolipids and cholesteryl esters. J Lipid Res 23:1072–1075

    PubMed  CAS  Google Scholar 

  19. Precht D, Molkentin J (1996) Rapid analysis of the isomers of trans-octadecenoic acid in milk fat. Int Dairy J 6:791–809

    Article  CAS  Google Scholar 

  20. Cruz-Hernandez C, Kramer JKG, Kraft J, Santercole V, Or-Rashid M, Deng Z, Dugan MER, Delmonte P, Yurawecz M (2006) Systematic analysis of trans and conjugated linoleic acids in the milk and meat of ruminants. In: Yurawecz MP, Kramer JKG, Gudmundsen O, Pariza MW, Banni S (eds) Advances in conjugated linoleic acid research, 3rd edn. AOAC, Urbana, pp 45–93

    Google Scholar 

  21. Kawashima H, Ohnishi M (2004) Identification of minor fatty acids and various non-methylene-interrupted diene isomers in mantle, muscle, and viscera of the marine bivalve Megangulus zyonoensis. Lipids 39:265–271

    Article  PubMed  CAS  Google Scholar 

  22. Fay L, Richli U (1991) Location of double bonds in polyunsaturated fatty acids by gas chromatography-mass spectrometry after 4,4-dimethyloxazoline derivatization. J Chromatogr 541:89–98

    Article  CAS  Google Scholar 

  23. Spitzer V (1997) Structure analysis of fatty acids by gas chromatography–low resolution electron impact spectrometry of their 4,4-dimethyloxazoline derivatives–a review. Prog Lipid Res 35:387–408

    Article  Google Scholar 

  24. Christie WW (1998) Gas chromatography-mass spectrometry methods for structural analysis of fatty acids. Lipids 33:343–353

    Article  PubMed  CAS  Google Scholar 

  25. Zhang JY, Yu QT, Liu BN, Huang ZH (1988) Chemical modification in mass spectrometry IV: 2-alkenyl-4, 4-dimethyloxazolines as derivatives for the double bond location of long-chain olefinic acids. Biomed Environ Mass Spectrom 15:33–44

    Article  CAS  Google Scholar 

  26. Yu QT, Liu BN, Zhang JY, Huang ZH (1989) Location of double bonds in fatty acids of fish oil and rat testis lipids. Gas chromatography-mass spectrometry of the oxazoline derivatives. Lipids 24:79–83

    Article  PubMed  CAS  Google Scholar 

  27. Luthria DL, Sprecher H (1993) 2-Alkenyl-4, 4-dimethyloxazolines as derivatives for the structural elucidation of isomeric unsaturated fatty acids. Lipids 28:561–564

    Article  PubMed  CAS  Google Scholar 

  28. Kramer JKG, Blackadar CB, Zhou J (2002) Evaluation of two GC columns (60-m SUPELCOWAX 10 and 100-m CP Sil 88) for analysis of milk fat with emphasis on CLA, 18:1, 18:2 and 18:3 isomers, and short- and long-chain FA. Lipids 37:823–835

    Article  PubMed  CAS  Google Scholar 

  29. Alves SP, Bessa RJB (2009) Comparison of two gas–liquid chromatograph columns for the analysis of fatty acids in ruminant meat. J Chromatogr A 1216:5130–5139

    Article  PubMed  CAS  Google Scholar 

  30. Destaillats F, Wolff RL, Angers P (2001) A new ∆7-polyunsaturated fatty acid in Taxus spp. Seed lipids, dihomotaxoleic (7, 11–20:2) acid. Lipids 36:319–321

    Article  PubMed  CAS  Google Scholar 

  31. Ryhage R, Stenhagen E (1960) Mass spectrometric studies. VI. Methyl esters of normal chain oxo-, hydroxy-, methoxy- and epoxy-acids. Arkiv Kemi 15:545–574

    CAS  Google Scholar 

  32. Zhang JY, Yu QT, Yang YM, Huang ZH (1988) Chemical modification in mass spectrometry. 11. A study on the mass spectra of 4,4-dimethyloxazoline derivatives of hydroxy fatty acids. Chem Scripta 28:357–363

    CAS  Google Scholar 

  33. Classen E, Marx F, Fabricius H (1994) Mass spectra of 4,4-dimethyloxazoline derivatives of oxooctadecanoic acids. Fat Sci Technol 96:331–332

    CAS  Google Scholar 

  34. Hou CT (1994) Production of 10-ketostearic acid from oleic acid by Flavobacterium sp. strain DS5 (NRRL B-14859). Appl Environ Microbiol 60:3760–3763

    PubMed  CAS  Google Scholar 

  35. Kramer JKG, Cruz-Hernandez C, Deng Z, Zhou J, Jahreis G, Dugan MER (2004) Analysis of conjugated linoleic acid and trans 18:1 isomers in synthetic and animal products. Am J Clin Nutr 79:1137S–1145S

    PubMed  CAS  Google Scholar 

  36. Lamberto M, Ackman RG (1995) Positional isomerisation of trans-3-hexadecenoic acid employing 2-amino-2-methyl-propanol as a derivatizing agent for ethylenic bond location by gas chromatography/mass spectrometry. Anal Biochem 230:224–228

    Article  PubMed  CAS  Google Scholar 

  37. Christie WW (1998) Mass spectrometry of fatty acids with methylene-interrupted ene-yne systems. Chem Phys Lipids 94:35–41

    Article  CAS  Google Scholar 

  38. Garrido JL, Medina I (2002) Identification of minor fatty acids in mussels (Mytilus galloprovincialis) by GC–MS of their 2-alkenyl-4,4-dimethyloxazoline derivatives. Anal Chim Acta 465:409–416

    Article  CAS  Google Scholar 

  39. Wilson R, Lyall K, Payne JA, Riemersma RA (2000) Quantitative analysis of long-chain trans-monoenes originating from hydrogenated marine oil. Lipids 35:681–687

    Article  PubMed  CAS  Google Scholar 

  40. Fournier V, Destaillats F, Juanéda P, Dionisi F, Lambelet P, Sébédio J-L, Berdeaux O (2006) Thermal degradation of long-chain polyunsaturated fatty acids during deodorization of fish oil. Eur J Lipid Sci Technol 108:33–42

    Article  CAS  Google Scholar 

  41. Fournier V, Juanéda P, Destaillats F, Dionisi F, Lambelet P, Sébédio J-L, Berdeaux O (2006) Analysis of eicosapentaenoic and docosahexaenoic acid geometrical isomers formed during fish oil deodorization. J Chromatogr A 1129:21–28

    Article  PubMed  CAS  Google Scholar 

  42. Kitessa SM, Gulati SK, Ashes JR, Fleck E, Scott TW, Nichols PD (2001) Utilisation of fish oil in ruminants—I. Fish oil metabolism in sheep. Anim Feed Sci Technol 89:189–199

    Article  CAS  Google Scholar 

  43. Toral PG, Shingfield KJ, Hervás G, Toivonen V, Frutos P (2010) Effect of fish oil and sunflower oil on rumen fermentation characteristics and fatty acid composition of digesta in ewes fed a high concentrate diet. J Dairy Sci 93:4804–4817

    Article  PubMed  CAS  Google Scholar 

  44. Hudson JA, MacKenzie CA, Joblin KN (1995) Conversion of oleic acid to 10-hydroxystearic acid by two species of ruminal bacteria. Appl Microbiol Biotechnol 44:1–6

    Article  PubMed  CAS  Google Scholar 

  45. Jenkins TC, AbuGhazaleh AA, Freeman S, Thies EJ (2006) The production of 10-hydroxystearic and 10-ketostearic acids is an alternative route of oleic acid transformation by the ruminal microbiota in cattle. J Nutr 136:926–931

    PubMed  CAS  Google Scholar 

  46. McKain N, Shingfield KJ, Wallace RJ (2010) Metabolism of conjugated linoleic acids and 18:1 fatty acids by ruminal bacteria: products and mechanisms. Microbiology 156:579–588

    Article  PubMed  CAS  Google Scholar 

  47. Hudson JA, Morvan B, Joblin KN (1998) Hydration of linoleic acid by bacteria isolated from ruminants. FEMS Microbiol Lett 169:277–282

    Article  PubMed  CAS  Google Scholar 

  48. Maia MRG, Chaudhary LC, Figueres L, Wallace RJ (2007) Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie van Leeuwenhoek 91:303–314

    Article  PubMed  CAS  Google Scholar 

  49. Maia MRG, Chaudhary LC, Bestwick CS, Richardson AJ, McKain N, Larson TR, Graham IA, Wallace RJ (2010) Toxicity of unsaturated fatty acids to the biohydrogenating ruminal bacterium, Butyrivibrio fibrisolvens. BMC Microbiol 10:52

    Article  PubMed  Google Scholar 

  50. Harfoot CG, Hazlewood GP (1988) Lipid metabolism in the rumen. In: Hobson PN (ed) The rumen microbial ecosystem. Elsevier, London, pp 285–322

    Google Scholar 

  51. Jenkins TC, Wallace RJ, Moate PJ, Mosley EE (2008) BOARD-INVITED REVIEW: recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. J Anim Sci 86:397–412

    Article  PubMed  CAS  Google Scholar 

  52. Shingfield KJ, Ahvenjärvi S, Toivonen V, Vanhatalo A, Huhtanen P, Griinari JM (2008) Effect of incremental levels of sunflower-seed oil in the diet on ruminal lipid metabolism in lactating cows. Br J Nutr 99:971–983

    Article  PubMed  CAS  Google Scholar 

  53. Jouany J-P, Lassalas B, Doreau M, Glasser F (2007) Dynamic features of the rumen metabolism of linoleic acid, linolenic acid and linseed oil measured in vitro. Lipids 42:351–360

    Article  PubMed  CAS  Google Scholar 

  54. Wallace RJ, McKain N, Shingfield KJ, Devillard E (2007) Isomers of conjugated linoleic acids are synthesized via different mechanisms in ruminal digesta and bacteria. J Lipid Res 48:2247–2254

    Article  PubMed  CAS  Google Scholar 

  55. Banni S, Carta G, Contini MS, Angioni E, Deiana M, Dessi MA, Melis MP, Corongiu FP (1996) Characterization of conjugated diene fatty acids in milk, dairy products, and lamb tissues. J Nutr Biochem 7:150–155

    Article  CAS  Google Scholar 

  56. Michaud AL, Yurawecz MP, Delmonte P, Corl BA, Bauman DE, Brenna T (2003) Identification and characterization of conjugated fatty acid methyl esters of mixed double bond geometry by acetonitrile chemical ionization tandem mass spectrometry. Anal Chem 75:4925–4930

    Article  PubMed  CAS  Google Scholar 

  57. Gómez-Córtes P, Tyburczy C, Brenna JT, Juárez M, Angel de la Fuente M (2009) Characterization of cis-9 trans-11 trans-15 C18:3 in milk fat by GC and covalent adduct chemical ionization tandem MS. J Lipid Res 50:2412–2420

    Article  PubMed  Google Scholar 

  58. Vlaeminck B, Harynuk J, Fievez V, Marriott P (2007) Comprehensive two-dimensional gas chromatography for the separation of fatty acids in milk. Eur J Lipid Sci Technol 109:757–766

    Article  CAS  Google Scholar 

  59. Wahl HG, Habel S-Y, Schmieder N, Liebich HM (1994) Identification of cis/trans isomers of methyl ester and oxazoline derivatives of unsaturated fatty acids using GC-FTIR-MS. J High Resolut Chromatogr 17:543–548

    Article  Google Scholar 

  60. Lemaitre RN, King IB, Mozaffarian D, Sotoodehnia N, Rea TD, Kuller LH, Tracy RP, Siscovick DS (2006) Plasma phospholipid trans fatty acids, fatal ischemic heart disease, and sudden cardiac death in older adults. Circulation 114:209–215

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Finnish Ministry of Agriculture and Forestry is gratefully acknowledged and appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin J. Shingfield.

About this article

Cite this article

Kairenius, P., Toivonen, V. & Shingfield, K.J. Identification and Ruminal Outflow of Long-Chain Fatty Acid Biohydrogenation Intermediates in Cows Fed Diets Containing Fish Oil. Lipids 46, 587–606 (2011). https://doi.org/10.1007/s11745-011-3561-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-011-3561-1

Keywords

Navigation