Skip to main content
Log in

Isolation and Characterization of a Stress-Dependent Plastidial Δ12 Fatty Acid Desaturase from the Antarctic Microalga Chlorella vulgaris NJ-7

  • Original Article
  • Published:
Lipids

Abstract

An acclimation to the changing physicochemical conditions and high amount of Δ12-unsaturated fatty acids of the Antarctic Chlorella vulgaris NJ-7 prompted us to speculate about the involvement of Δ12-fatty acid desaturases (FAD) in its adaptation to the extremely unfavorable ambience. A full-length cDNA sequence, designated CvFAD6, was isolated from C. vulgaris NJ-7 via RT-PCR and RACE methods. Sequence alignment showed that the gene was homologous to corresponding Δ12-FAD from other eukaryotes. Phylogenetic analysis showed that it was grouped with plastidial Δ12-FAD with conserved histidine boxes. Yeast cells transformed with a plasmid construct containing CvFAD6 coding region accumulated a considerable amount of linoleic acid (18:2Δ9,12), normally not present in wild-type yeast cells, suggesting that the isolated gene encodes a functional Δ12 enzyme. The correlation between the accumulation of CvFAD6 and temperature has been examined by real time PCR. The analysis showed a constant expression of CvFAD6 from 25 to 15 °C whereas a fourfold increased from 25 to 4 °C. Moreover, CvFAD6 transcription was more sensitive to saline stress since a 20-fold increase at 6% NaCl was detected. Our data demonstrate that CvFAD6 is the enzyme responsible for the Δ12 fatty acids desaturation involved in low temperature and high salinity acclimation for Antarctic C. vulgaris NJ-7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

FAD:

Fatty acid desaturase

UFA:

Unsaturated fatty acid

References

  1. Mock T, Thomas DN (2005) Recent advances in sea-ice microbiology. Environ Microbiol 7:605–619

    Article  CAS  PubMed  Google Scholar 

  2. Hu HH, Li HY, Xu XD (2008) Alternative cold response modes in Chlorella (Chlorophyta, Trebouxiophyceae) from Antarctica. Phycologia 47:28–34

    Article  CAS  Google Scholar 

  3. Morgan-Kiss RM, Ivanov AG, Huner NP (2002) The Antarctic psychrophile, Chlamydomonas subcaudata is deficient in state I-state II transitions. Planta 214:435–445

    Article  CAS  PubMed  Google Scholar 

  4. Morgan-Kiss RM, Ivanov AG, Modla S, Czymmek K, Huner NPA, Priscu JC, Lisle JT, Hanson TE (2008) Identity and physiology of a new psychrophilic eukaryotic green alga. Chlorella sp., strain BI, isolated from a transitory pond near Bratina Island, Antarctica. Extremophiles 12:701–711

    Article  CAS  PubMed  Google Scholar 

  5. D’amico S, Collins T, Marx JC, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389

    Article  PubMed  Google Scholar 

  6. Morgan-Kiss RM, Priscu JC, Pocock T, Gudynaite-Savitch L, Huner NPA (2006) Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol Mol Biol Rev 70:222–252

    Article  CAS  PubMed  Google Scholar 

  7. Lu YD, Chi XY, Yang QL, Li ZX, Liu SF, Gan QH, Qin S (2009) Molecular cloning and stress-dependent expression of a gene encoding Δ12-fatty acid desaturase in the Antarctic microalga Chlorella vulgaris NJ-7. Extremophiles 13:875–884

    Google Scholar 

  8. Chi XY, Zhang XW, Guan XY, Ding L, Li YX, Wang MQ, Lin HZ, Qin S (2008) Fatty acid biosynthesis in eukaryotic photosynthetic microalgae: identification of a microsomal Δ12 desaturase in Chlamydomonas reinhardtii. J Microbiol 46:189–201

    Article  CAS  PubMed  Google Scholar 

  9. Shanklin J, Cahoon EB (1998) Desaturation and related modifications of fatty acids. Annu Rev Plant Physiol 49:611–641

    Article  CAS  Google Scholar 

  10. Sakuradani E, Kobayashi M, Ashikari T, Shimizu S (1999) Identification of Δ12-fatty acid desaturase from arachidonic acid-producing Mortierella fungus by heterologous expression in the yeast Saccharomyces cerevisiae and the fungus Aspergillus oryzae. Eur J Biochem 261:812–820

    Article  CAS  PubMed  Google Scholar 

  11. Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae. Bacteriol Rev 35:171–205

    CAS  PubMed  Google Scholar 

  12. Sambrook J, Fritsch EF, Maniatis T et al (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  13. Li Y, Sommerfeld M, Chen F, Hu Q (2008) Consumption of oxygen by astaxanthin biosynthesis: a protective mechanism against oxidative stress in Haematococcus pluvialis (Chlorophyceae). J Plant Physiol 165:1783–1797

    Article  CAS  PubMed  Google Scholar 

  14. Zhou XR, Robert SS, Petrie JR, Frampton DM, Mansour PM, Blackburn SI, Nichols PD, Green AG, Singh SP (2007) Isolation and characterization of genes from the marine microalga Pavlova salina encoding three front-end desaturases involved in docosahexaenoic acid biosynthesis. Phytochemistry 68:785–796

    Article  CAS  PubMed  Google Scholar 

  15. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2005) GenBank. Nucleic Acids Res 33:D34–D38

    Article  CAS  PubMed  Google Scholar 

  16. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  Google Scholar 

  17. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Article  CAS  PubMed  Google Scholar 

  18. Moller S, Croning MD, Apweiler R (2001) Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17:646–653

    Article  CAS  PubMed  Google Scholar 

  19. Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  PubMed  Google Scholar 

  20. Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequences alignment with the Clustal series of programs. Nucleic Acids Res 31:3497–3500

    Article  CAS  PubMed  Google Scholar 

  21. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  22. Robert SS, Petrie JR, Zhou XR, Mansour MP, Blackburn SI, Green AG, Singh SP, Nichols PD (2009) Isolation and characterisation of a Δ5-fatty acid elongase from the marine microalga Pavlova salina. Mar Biotechnol 11:410–418. doi:10.1007/s10126-008-9157-y

    Article  CAS  PubMed  Google Scholar 

  23. Hsiao TY, Holmes B, Blanch HW (2007) Identification and functional analysis of a Δ-6 desaturase from the marine microalga Glossomastix chrysoplasta. Mar Biotechnol 9:154–165

    Article  CAS  PubMed  Google Scholar 

  24. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-delta delta CT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  25. Suga K, Honjoh K, Furuya N, Shimizu H, Nishi K, Shinohara F, Hirabaru Y, Maruyama I, Miyamoto T, Hatano S, Iio M (2002) Two low-temperature-inducible Chlorella genes for delta12 and omega-3 fatty acid desaturase (FAD): isolation of delta12 and omega-3 fad cDNA clones, expression of delta12 fad in Saccharomyces cerevisiae, and expression of omega-3 fad in Nicotiana tabacum. Biosci Biotechnol Biochem 66:1314–1327

    Article  CAS  PubMed  Google Scholar 

  26. Hitz WD, Carlson TJ, Booth JR Jr, Kinney AJ, Stecca KL, Yadav NS (1994) Cloning of a higher-plant plastid omega-6 fatty acid desaturase cDNA and its expression in a cyanobacterium. Plant Physiol 105:635–641

    Article  CAS  PubMed  Google Scholar 

  27. Shanklin J, Whittle E, Fox BG (1994) Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry 33:12787–12794

    Article  CAS  PubMed  Google Scholar 

  28. Wei DS, Li MC, Zhang XX, Ren Y, Xing LJ (2004) Identification and characterization of a novel Δ12 -fatty acid desaturase gene from Rhizopus arrhizus. FEBS Lett 573:45–50

    Article  CAS  PubMed  Google Scholar 

  29. Sakai H, Kajiwara S (2005) Cloning and functional characterization of a Δ12 fatty acid desaturase gene from the basidiomycete Lentinula edodes. Mol Genet Genomics 273:336–341

    Article  CAS  PubMed  Google Scholar 

  30. Domergue F, Spiekermann P, Lerchl J, Beckmann C, Kilian O, Kroth PG, Boland W, Za¨hringer U, Heinz E (2003) New insight into Phaeodactylum tricornutum fatty acid metabolism. Cloning and functional characterization of plastidial and microsomal Δ12-fatty acid desaturases. Plant Physiol 131:1648–1660

    Article  CAS  PubMed  Google Scholar 

  31. Niu B, Ye H, Xu Y, Wang S, Chen P, Peng S, Ou Y, Tang L, Chen F (2007) Cloning and characterization of a novel Δ12-fatty acid desaturase gene from the tree Sapium sebiferum. Biotechnol Lett 29:959–964

    Article  CAS  PubMed  Google Scholar 

  32. Turk M, Abramovi′c Z, Plemenitaš A, Gunde-Cimerman N (2007) Salt stress and plasma-membrane fluidity in selected extremophilic yeasts and yeast-like fungi. FEMS Yeast Res 7:550–557

    Article  CAS  PubMed  Google Scholar 

  33. Turk M, Mejanelle L, Šentjurc M, Grimalt JO, Gunde-Cimerman N, Plemenitaš A (2004) Salt-induced changes in lipid composition and membrane fluidity of halophilic yeast-like melanized fungi. Extremophiles 8:53–61

    Article  CAS  PubMed  Google Scholar 

  34. Yokotani N, Ichikawa T, Kondou Y, Matsui M, Hirochika H, Iwabuchi M, Oda K (2009) Tolerance to various environmental stresses conferred by the salt-responsive rice gene ONAC063 in transgenic Arabidopsis. Planta 229:1065–1075. doi:10.1007/s00425-009-0895-5

    Article  CAS  PubMed  Google Scholar 

  35. Despeghel J, Granier C, Monsanto SAS (2007) Fad-2 mutants and high oleic plants. EP1806398

  36. Patel M, Jung S, Moore K, Powell G, Ainsworth C, Abbott A (2004) High-oleate peanut mutants result from a MITE insertion into the FAD2 gene. Theor Appl Genet 108:1492–1502

    Article  CAS  PubMed  Google Scholar 

  37. Zhou XR, Singh S, Liu Q, Green A (2006) Combined transgenic expression of Δ12-desaturase and Δ12-epoxygenase in high linoleic acid seeds leads to increased accumulation of vernolic acid. Funct Plant Biol 33:585–592

    Article  CAS  Google Scholar 

  38. Rabus R, Ruepp A, Frickey T et al (2004) The genome of Desulfotalea psychrophila, a sulfate-reducing bacterium from permanently cold Arctic sediments. Environ Microbiol 6:887–902

    Article  CAS  PubMed  Google Scholar 

  39. Saunders NFW, Thomas T, Curmi PMG et al (2003) Mechanisms of thermal adaptation revealed from the genomes of the Antarctic Archaea Methanogenium frigidum and Methanococcoides burtonii. Genome Res 13:1580–1588

    Article  CAS  PubMed  Google Scholar 

  40. Medigue C, Krin E, Pascal G et al (2005) Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res 15:1325–1335

    Article  CAS  PubMed  Google Scholar 

  41. Methe BA, Nelson KE, Deming JW et al (2005) The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acad Sci USA 102:10913–10918

    Article  CAS  PubMed  Google Scholar 

  42. Thorvaldsen S, Hjerde E, Fenton C, Willassen NP (2007) Molecular characterization of cold adaptation based on ortholog protein sequences from Vibrionaceae species. Extremophiles 11:719–732. doi:10.1007/s00792-007-0093-y

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Pro. Xu Xudong (Institute of Hydrobiology, Chinese Academy of Sciences) for providing the Antarctic microalga strain C. vulgaris NJ-7. This work was supported by the Key Innovative Project of Chinese Academy of Science (KSCX2-YW-G-002, KZCX2-YW-209, KZCX2-YW-225), the National Science Foundation of China (30870247, 30670165, 40876082), the High-Tech Research and Development Program of China (No.2006AA10A114), the National Key Basic Research and Development Project of China (No.2007CB116212) and the Key Technology Research Project of Qingdao (No.07-1-4-16-nsh).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Qin.

About this article

Cite this article

Lu, Y., Chi, X., Li, Z. et al. Isolation and Characterization of a Stress-Dependent Plastidial Δ12 Fatty Acid Desaturase from the Antarctic Microalga Chlorella vulgaris NJ-7. Lipids 45, 179–187 (2010). https://doi.org/10.1007/s11745-009-3381-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-009-3381-8

Keywords

Navigation