Skip to main content

Advertisement

Log in

Identity and physiology of a new psychrophilic eukaryotic green alga, Chlorella sp., strain BI, isolated from a transitory pond near Bratina Island, Antarctica

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Permanently low temperature environments are one of the most abundant microbial habitats on earth. As in most ecosystems, photosynthetic organisms drive primary production in low temperature food webs. Many of these phototrophic microorganisms are psychrophilic; however, functioning of the photosynthetic processes of these enigmatic psychrophiles (the “photopsychrophiles”) in cold environments is not well understood. Here we describe a new chlorophyte isolated from a low temperature pond, on the Ross Ice Shelf near Bratina Island, Antarctica. Phylogenetic and morphological analyses place this strain in the Chlorella clade, and we have named this new chlorophyte Chlorella BI. Chlorella BI is a psychrophilic species, exhibiting optimum temperature for growth at around 10°C. However, psychrophily in the Antarctic Chlorella was not linked to high levels of membrane-associated poly-unsaturated fatty acids. Unlike the model Antarctic lake alga, Chlamydomonas raudensis UWO241, Chlorella BI has retained the ability for dynamic short term adjustment of light energy distribution between photosystem II (PS II) and photosystem I (PS I). In addition, Chlorella BI can grow under a variety of trophic modes, including heterotrophic growth in the dark. Thus, this newly isolated photopsychrophile has retained a higher versatility in response to environmental change than other well studied cold-adapted chlorophytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A:

Antheraxanthin

Chl-a :

Chlorophyll a

Chl-b :

Chlorophyll b

EPS:

Epoxidation state of the xanthophyll cycle

F 685,695,715 :

77 K Fluorescence emission maxima at 685, 695, 715 nm

FAMEs:

Fatty acid methyl esters

LHC II:

Light harvesting II

PAR:

Photosynthetically active radiation

PS I:

Photosystem I

PS II:

Photosystem II

PUFAs:

Polyunsaturated fatty acids

T op :

Optimal growth temperature

T max :

Maximum growth temperature

V:

Violaxanthin

Z:

Zeaxanthin

References

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    PubMed  CAS  Google Scholar 

  • Bouarb L, Dauta A, Loudiki M (2004) Heterotrophic and mixotrophic growth of Micractinium pusillum Fresenius in the presence of acetate and glucose: effect of light and acetate gradient concentration. Wat Res 38:2706–2712

    Article  CAS  Google Scholar 

  • Chen F, Johns MR (1991) Effect of C/N ratios and aeration on the fatty acid composition of heterotrophic Chlorella sorokiniana. J Appl Phycol 3:203–209

    Article  CAS  Google Scholar 

  • Christie WW (2003) Lipid analysis: isolation, separation, identification and structural analysis of lipids, 3rd edn, vol 15. The Oily Press, Bridgewater

  • Cota GF (1985) Photoadaptation of high arctic ice algae. Nature 315:219–222

    Article  CAS  Google Scholar 

  • D’amico S, Collins T, Marx JC, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389

    Article  PubMed  CAS  Google Scholar 

  • Demmig-Adams B, Adams WWIII (1992) Photoprotection and other responses of plants to high light stress. Ann Rev Plant Physiol Plant Mol Biol 43:599–626

    Article  CAS  Google Scholar 

  • Devos N, Ingouff M, Loppes R, Matagne R (1998) RUBISCO adaptation to low temperatures: a comparative study in psychrophilic and mesophilic unicellular algae. J Phycol 34:665–660

    Article  Google Scholar 

  • Erokhina LG, Shatilovich AV, Kaminskaya OP, Gilichinskii DA (2004) Spectral properties of ancient green algae from Antarctic Dry Valley permafrost. Microbiology 73:485–487

    Article  CAS  Google Scholar 

  • Fiala M, Oriol L (1990) Light-temperature interactions on the growth of Antarctic diatoms. Mar Chem 35:169–177

    Google Scholar 

  • Fritsen CH, Priscu JC (1999) Seasonal change in the optical properties of the permanent ice cover on Lake Bonney, Antarctica: consequences for lake productivity and dynamics. Limnol Oceanogr 44:447–454

    Google Scholar 

  • Gushina IA, Harwood JL (2006) Mechanisms of temperature adaptation in poikilotherms. FEBS Lett 580:5477–5483

    Article  CAS  Google Scholar 

  • Hawes I, Howard-Williams C (2003) Pond life on the McMurdo Ice Shelf, one of the world’s strangest ecosystems. NIWA 11:21–22

    Google Scholar 

  • Hawes I, Smith REH, Howard-Williams C, Schwarz A-M (1999) Environmental conditions during freezing, and response of microbial mats in ponds of the McMurdo Ice Shelf, Antarctica. Antarc Sci 11:198–208

    Google Scholar 

  • Howard-Williams C, Pridmore R, Downes MT, Vincent WF (1989) Microbial biomass, photosynthesis and chlorophyll a related pigments in the ponds of the McMurdo Ice shelf, Antarctica. Antarc Sci 1:125–131

    Google Scholar 

  • Hüner NPA, Öquist G, Sarhan F (1998) Energy balance and acclimation to light and cold. Trends Plant Sci 3:224–230

    Article  Google Scholar 

  • Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophyll a, b, c1, c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz 167:191–194

    CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Molec Evol 16:111–120

    Article  PubMed  CAS  Google Scholar 

  • Kovacs L, Wiessner W, Kis M, Nagy F, Mende D, Demeter S (2000) Short- and long-term redox regulation of photosynthetic light energy distribution and photosystem stoichiometry by acetate metabolism in the green alga, Chlamydobytrys stellata. Photosyn Res 65:231–247

    Article  PubMed  CAS  Google Scholar 

  • Krause GH, Weis E (1984) Chlorophyll fluorescence as a tool in plant physiology. II. Interpretation of fluorescence signals. Photosyn Res 5:139–157

    Article  CAS  Google Scholar 

  • Krienitz L, Hegewald E, Hepperle D, Huss VAR, Rohr T, Wolf M (2004) Phylogenetic relationship of Chlorella and Parachlorella gen. nov. (Chlorophyta, Trebouxiophyceae). Phycolog 43:529–542

    Article  Google Scholar 

  • Laybourn-Parry J, Pearce DA (2007) The biodiversity and ecology of Antarctic lakes: models for evolution. Philos Trans R Soc Lond B Biol Sci 362:2273–2289

    Article  PubMed  CAS  Google Scholar 

  • Lizotte MP, Priscu JC (1992) Photosynthesis-irradiance relationships in phytoplankton from the physically stable water column of a perennially ice-covered lake (Lake Bonney, Antarctica). J Phycol 28:179–185

    Article  Google Scholar 

  • Luo W, Pflugmacher S, Proschold T, Walz N, Krienitz L (2006) Genotype versus phenotype variability in Chlorella and Micractinium (Chlorophyta, Trebouxiophyceae). Protist 157:315–333

    Article  PubMed  CAS  Google Scholar 

  • McLachlan JL, Curtis JM, Keusgen M, Boutilier K, Keusgen M, Seguel MR (1999) Tetreutreptia pomquetensis (Euglenophyta), a psychrophilic species: growth and fatty acid composition. J Phycol 35:280–286

    Article  CAS  Google Scholar 

  • Mock T, Hock H (2005) Long-term temperature acclimation of photosynthesis in steady-state cultures of the polar diatom Fragilariopsis cylindrus. Photosyn Res 85:307–317

    Article  PubMed  CAS  Google Scholar 

  • Morgan RM, Ivanov AG, Priscu JC, Maxwell DP, Hüner NPA (1998) Structure and composition of the photochemical apparatus of the Antarctic green alga, Chlamydomonas subcaudata. Photosyn Res 56:303–314

    Article  CAS  Google Scholar 

  • Morgan-Kiss R, Ivanov AG, Williams J, Mobashsher K, Hüner NP (2002a) Differential thermal effects on the energy distribution between photosystem II and photosystem I in thylakoid membranes of a psychrophilic and a mesophilic alga. Biochim Biophys Acta 1561:251–265

    Article  PubMed  CAS  Google Scholar 

  • Morgan-Kiss RM, Ivanov AG, Hüner NPA (2002b) The Antarctic psychrophile, Chlamydomonas subcaudata, is deficient in state I–state II transitions. Planta 214:435–445

    Article  PubMed  CAS  Google Scholar 

  • Morgan-Kiss RM, Ivanov AG, Pocock T, Król M, Gudynaite-Savitch L, Hüner NPA (2005) The Antarctic psychrophile, Chlamydomonas raudensis Ettl (UWO241) (CHLOROPHYCEAE, CHLOROPHYTA) exhibits a limited capacity to photoacclimate to red light. J Phycol 41:791–800

    Article  Google Scholar 

  • Morgan-Kiss RM, Priscu JP, Pocock T, Gudynaite-Savitch L, Hüner NPA (2006) Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol Molec Biol Rev 70:222–252

    Article  CAS  Google Scholar 

  • Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–167

    PubMed  CAS  Google Scholar 

  • Neale PJ, Priscu JC (1995) The photosynthetic apparatus of phytoplankton from a perennially ice-covered Antarctic lake: acclimation to an extreme shade environment. Plant Cell Physiol 36:253–263

    CAS  Google Scholar 

  • Nishida I, Murata N (1996) Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Ann Rev Plant Physiol Plant Mol Biol 47:541–568

    Article  CAS  Google Scholar 

  • Pocock T, Lachance M-A, Proschold T, Priscu JC, Kim S, Huner NPA (2004) Identification of a psychrophilic green alga from Lake Bonney Antarctica: Chlamydomonas raudensis ETTL. (UWO 241) (Chlorophyceae). J Phycol 40:1138–1148

    Article  Google Scholar 

  • Priscu JC, Christner BC (2004) Earth’s Icy Biosphere. In: Bull AT (ed) Microbial diversity and bioprospecting. ASM Press, Washington, D.C., pp 130–145

    Google Scholar 

  • Pulich WM, Ward CH (1973) Physiology and ultrastructure of an oxygen-resistant Chlorella mutant under heterotrophic conditions. Plant Physiol 51:337–334

    Article  PubMed  CAS  Google Scholar 

  • Ralph PJ, McMin A, Ryan KG, Ashworth C (2005) Short-term effect of temperature on the photokinetics of microalgae from the surface layers of Antarctic pack ice. J Phycol 41:763–769

    Article  Google Scholar 

  • Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7

    PubMed  CAS  Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212

    Article  PubMed  CAS  Google Scholar 

  • Sato A, Kurano N, Senger H, Miyachi S (2002) Regulation of energy balance in Photosystems in response to changes in CO2 concentrations in light intensities during growth in extremely-high-CO2-tolerant green microalgae. Plant Cell Physiol 43:440–451

    Article  Google Scholar 

  • Silverberg BA (1975) An ultrastructural and cytochemical characterization of microbodies in the green algae. Protoplasma 83:269–295

    Article  PubMed  CAS  Google Scholar 

  • Spigel RH, Priscu JC (1998) Physical limnology of the McMurdo Dry Valley lakes. In: Priscu JC (ed) Ecosystem dynamics in a Polar Desert: the McMurdo Dry valleys, Antarctica Antarctic Research Series, vol 72. American Geophysical Union

  • Stal LJ (1995) Physiological ecology of cyanobacteria in microbial mats and other communities. New Phytol 131:1–32

    Article  CAS  Google Scholar 

  • Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae. Bacteriol Rev 35:171–205

    PubMed  CAS  Google Scholar 

  • Ston J, Kosakowska A (2002) Phytoplankton pigments designation-an application of RP-HPLC in qualitative and quantitative analysis. J Appl Phycol 14:205–210

    Article  CAS  Google Scholar 

  • Suzuki MT, Giovannoni SJ (1996) Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol 62:625–630

    PubMed  CAS  Google Scholar 

  • Sweetman G, Trinei M, Modha J, Kusel J, Freestone P, Fishov I, Joseleau-Petit D, Redman C, Farmer P, Norris V (1996) Electrospray ionization mass spectrometric analysis of phospholipids of Escherichia coli. Molec Microbiol 20:233–238

    Article  CAS  Google Scholar 

  • Szyszka B, Ivanov AG, Huner NPA (2007) Psychrophily induces differential energy partitioning, photosystem stoichiometry and polypeptide phosphorylation in Chlamydomonas raudensis. Biochim Biophys Acta 1767:789–800

    Article  PubMed  CAS  Google Scholar 

  • Van Heukelem L, Thomas C (2001) Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. J Chromatog A 910:31–49

    Article  Google Scholar 

  • Vincent WF, Downes MT, Castenholz R, Howard-Williams C (1993) Community structure and pigment organisation of cyanobacteria-dominated microbial mats in Antarctica. Eur J Phycol 28:213–221

    Article  Google Scholar 

  • Vincent WF, Howard-Williams C (2001) Life on snowball Earth. Science 287:2421

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Bruce Kingham at the University of Delaware Sequencing facility for sequencing reactions. We would also like to thank personnel at The Mass Spectrometry Facility at the University of Illinois Urbana-Champaign for training and advice regarding the Quattro MS. This work was supported in part through grants from the National Science and Engineering Council of Canada (NPAH & AGI) and the National Science Foundation grants MCB 0237335 (TEH) & NSF-OPP 0631494 (JCP & RMK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachael M. Morgan-Kiss.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morgan-Kiss, R.M., Ivanov, A.G., Modla, S. et al. Identity and physiology of a new psychrophilic eukaryotic green alga, Chlorella sp., strain BI, isolated from a transitory pond near Bratina Island, Antarctica. Extremophiles 12, 701–711 (2008). https://doi.org/10.1007/s00792-008-0176-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-008-0176-4

Keywords

Navigation