Skip to main content
Log in

Dietary α-linolenic acid increases brain but not heart and liver docosahexaenoic acid levels

  • Articles
  • Published:
Lipids

Abstract

Fish oil-enriched diets increase n−3 FA in tissue phospholipids; however, a similar effect by plant-derived n−3 FA is poorly defined. To address this question, we determined mass changes in phospholipid FA, individual phospholipid classes, and cholesterol in the liver, heart, and brain of rats fed diets enriched in flax oil (rich in 18∶3n−3), fish oil (rich in 22∶6n−3 and 20∶5n−3), or safflower oil (rich in 18∶2n−6) for 8 wk. In the heart and liver phospholipids, 22∶6n−3 levels increased only in the fish oil group, although rats fed flax oil accumulated 20∶5n−3 and 22∶5n−3. However, in the brain, the flax and fish oil diets increased the phospholipid 22∶6n−3 mass. In all tissues, these diets decreased the 20∶4n−6 mass, although the effect was more marked in the fish oil than in the flax oil group. Although these data do not provide direct evidence for 18∶3n−3 elongation and desaturation by the brain, they demonstrate that 18∶3n−3-enriched diets reduced tissue 20∶4n−6 levels and increased cellular n−3 levels in a tissuedependent manner. We hypothesize, based on the lack of increased 22∶6n−3 but increased 18∶3n−3 in the liver and heart, that the flax oil diet increased circulating 18∶3n−3, thereby presenting tissue with this EFA for further elongation and desaturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

18∶1n−9:

oleic acid

18∶2n−6:

linoleic acid

18∶3n−3:

α-linolenic acid

20∶3n−9:

Mead acid

20∶4n−6:

arachidonic acid

20∶5n−3:

eicosapentaenoic acid

22∶5n−3:

docosapentaenoic acid

22∶5n−6:

docosapentaenoic acid n−6

22∶6n−3:

docosahexaenoic acid

CerPCho:

sphingomyelin

ChoGpl:

choline glycerophospholipids

EtnGpl:

ethanolamine glycerophospholipids

PlsCho:

1-O-alkyl-1′-enyl-2-acyl-sn-glycero-3-phosphocholine

PlsEtn:

1-O-alkyl-1′-enyl-2-acyl-sn-glycero-3-phosphoethanolamine

Ptd2Gro:

cardiolipin

PtdIns:

phosphatidylinositol

PtdOH:

phosphatidic acid

PtdSer:

phosphatidylserine

References

  1. Lauritzen, L., Hansen, H.S., Jørgensen, M.H., and Michaelsen, K.F. (2001) The Essentiality of Long-Chain n−3 Fatty Acids in Relation to Development and Function of the Brain and Retina, Prog. Lipid Res. 40, 1–94.

    Article  PubMed  CAS  Google Scholar 

  2. Leaf, A., Kang, J.X., Xiao, Y.-F., and Billman, G.E. (2003) Clinical Prevention of Sudden Cardíac Death by n−3 Polyunsaturated Fatty Acids and Mechanism of Prevention of Arrhythmias by n−3 Fish Oils, Circulation 107, 2646–2652.

    Article  PubMed  Google Scholar 

  3. Stoll, A.L., Severus, W.E., Freeman, M.P., Rueters, S., Zboyan, H.A., Diamond, E., Cress, K.K., and Marangell, L.B. (1999) Omega 3 Fatty Acids in Bipolar Disorder: A Preliminary Double-Blind, Placebo-Controlled Trial, Arch. Gen. Psychiatry 56, 407–412.

    Article  PubMed  CAS  Google Scholar 

  4. Wijendran, V., and Hayes, K.C. (2004) Dietary n−6 and n−3 Fatty Acid Balance and Cardiovascular Health, Annu. Rev. Nutr. 24, 597–615.

    Article  PubMed  CAS  Google Scholar 

  5. Sunshine, C., and McNamee, M.G. (1994) Lipid Modulation of Nicotinic Acetylcholine Receptor Function: The Role of Membrane Lipid Composition and Fluidity, Biochim. Biophys. Acta 1191, 59–64.

    Article  PubMed  CAS  Google Scholar 

  6. Gerbi, A., Maixent, J.-M., Barbey, O., Jamme, I., Pierlovisi, M., Coste, T., Pieroni, G., Novelot, A., Vague, P., and Raccah, D. (1998) Alterations of Na,K-ATPase Isoenzymes in the Rat Diabetic Neuropathy: Protective Effect of Dietary Supplementation with n−3 Fatty Acids, J. Neurochem. 71, 732–740.

    Article  PubMed  CAS  Google Scholar 

  7. Cannon, B., Hermansson, M., Györke, S., Somerharju, P., Virtanen, J.A., and Cheng, K.H. (2003) Regulation of Calcium Channel Activity by Lipid Domain Formation in Planar Lipid Bilayers, Biophys. J. 85, 933–942.

    PubMed  CAS  Google Scholar 

  8. Lesa, G.M., Palfreyman, M., Hall, D.H., Clandinin, M.T., Rudolph, C., Jorgensen, E.M., and Schiavo, G. (2003) Long Chain Polyunsaturated Fatty Acids Are Required for Efficient Neurotransmission in C. elegans, J. Cell Sci. 116, 4965–4975.

    Article  PubMed  CAS  Google Scholar 

  9. Kodas, E., Galineau, L., Bodard, S., Vancassel, S., Guilloteau, D., Besnard, J.-C., and Chalon, S. (2004) Sertoninergic Neurotransmission Is Affected by n−3 Polyunsaturated Fatty Acids in the Rat, J. Neurochem. 89, 695–702.

    Article  PubMed  CAS  Google Scholar 

  10. Pepe, S., and McLennan, P.L. (2002) Cardiac Membrane Fatty Acid Composition Modulates Myocardial Oxygen Consumption and Postischemic Recovery of Contractile Function, Circulation, 105, 2303–2308.

    Article  PubMed  CAS  Google Scholar 

  11. Gilroy, D.W., Newson, J., Sawmynaden, P., Willoughby, D.A., and Croxtall, J.D. (2004) A Novel Role for Phospholipase A2 Isoforms in the Checkpoint Control of Acute Inflammation, FASEB J. 18, 489–498.

    Article  PubMed  CAS  Google Scholar 

  12. Cunnane, S.C., and Anderson, M.J. (1997) The Majority of Dietary Linoleate in Growing Rats Is β-Oxidized or Stored in Visceral Fat, J. Nutr. 127, 146–152.

    PubMed  CAS  Google Scholar 

  13. Poumès-Ballihaut, C., Langelier, B., Houlier, F., Alessandri, J.-M., Durand, G., Latge, C., and Guesnet, P. (2001) Comparative Bioavailability of Dietary α-Linolenic and Docosahexaenoic Acids in the Growing Rat, Lipids 36, 793–800.

    Article  PubMed  Google Scholar 

  14. Bowen, R.A.R., and Clandinin, M.T. (2000) High Dietary 18∶3n−3 Increases in the 18∶3n−3 but Not the 22∶6n−3 Content in the Whole Body, Brain, Skin, Epididymal Fat Pads, and Muscles of Suckling Rat Pups, Lipids 35, 389–394.

    Article  PubMed  CAS  Google Scholar 

  15. MacDonald-Wicks, L.K., and Garg, M.L. (2004) Incorporation of n−3 Fatty Acids into Plasma and Liver Lipids of Rats: Importance of Background Dietary Fat, Lipids 39, 545–551.

    Article  PubMed  CAS  Google Scholar 

  16. Morise, A., Combe, N., Boué, C., Legrand, P., Catheline, D., Delplanque, B., Fénart, E., Weill, P., and Hermier, D. (2004) Dose Effect of α-Linolenic Acid on PUFA Conversion, Bioavailability, and Storage in the Hamster, Lipids 39, 325–334.

    Article  PubMed  CAS  Google Scholar 

  17. Abedin, L., Lien, E.L., Vingrys, A.J., and Sinclair, A.J. (1999) The Effects of Dietary α-Linolenic Acid Compared with Docosahexaenoic Acid on Brain, Retina, Liver, and Heart in the Guinea Pig, Lipids 34, 475–482.

    Article  PubMed  CAS  Google Scholar 

  18. Bazinet, R.P., McMillan, E.G., and Cunnane, S.C. (2003) Dietary α-Linolenic Acid Increases the n−3 PUFA Content of Sow’s Milk and the Tissues of the Suckling Piglet, Lipids 38, 1045–1049.

    Article  PubMed  CAS  Google Scholar 

  19. Su, H.M., Huang, M.C., Saad, N.M., Nathanielsz, P.W., and Brenna, J.T. (2001) Fetal Baboons Convert 18∶3n−3 to 22∶6n−3 in vivo. A Stable Isotope Tracer Study, J. Lipid Res. 42, 581–586.

    PubMed  CAS  Google Scholar 

  20. Mantzioris, E., James, M.J., Gibson, R.A., and Cleland, L.G. (1994) Dietary Substitution with an α-Linolenic Acid-rich Vegetable Oil Increases Eicosapentaenoic Acid Concentrations in Tissues, Am. J. Clin. Nutr. 59, 1304–1309.

    PubMed  CAS  Google Scholar 

  21. Burdge, G.C., Jones, A.E., and Wooton, S.A. (2002) Eicosapentaenoic and Docosapentaenoic Acids Are the Principal Products of α-Linolenic Acid Metabolism in Young Men, Br. J. Nutr. 88, 355–363.

    Article  PubMed  CAS  Google Scholar 

  22. Burdge, G. (2004) α-Linolenic Acid Metabolism in Men and Women: Nutritional and Biological Implications, Curr. Opin. Clin. Nutr. Metab. Care 7, 137–144.

    Article  PubMed  CAS  Google Scholar 

  23. Barcelo-Coblijn, G., Kitajka, K., Puskas, L.G., Hogyes, E., Zvara, A., Hackler, L., Jr., and Farkas, T. (2003) Gene Expression and Molecular Composition of Phospholipids in Rat Brain in Relation to Dietary n−6 and n−3 Fatty Acid Ratio, Biochim. Biophys. Acta 1632, 72–79.

    PubMed  CAS  Google Scholar 

  24. Meyer, B.J., Mann, N.J., Lewis, J.L., Milligan, G.C., Sinclair, A.J., and Howe, P.R. (2003) Dietary Intakes and Food Sources of Omega-6 and Omega-3 Polyunsaturated Fatty Acids, Lipids 38, 391–398.

    Article  PubMed  CAS  Google Scholar 

  25. Astorg, P., Arnault, N., Czernichow, S., Noisette, N., Galan, P., and Hercberg, S. (2004) Dietary Intakes and Food Sources of n−6 and n−3 PUFA in French Adult Men and Women, Lipids 39, 527–535.

    Article  PubMed  CAS  Google Scholar 

  26. Reeves, P.G., Nielsen, F.H., and Fahey, C.G., Jr. (1993) AIN-93 Purified Diets for Laboratory Rodents: Final Report of the American Institute of Nutrition ad hoc Writing Committee on the Reformation of the AIN-76A Rodent Diet, J. Nutr. 123 1939–1951.

    PubMed  CAS  Google Scholar 

  27. Hara, A., and Radin, N.S. (1978) Lipid Extraction of Tissues with a Low-Toxicity Solvent, Anal. Biochem. 90, 420–426.

    Article  PubMed  CAS  Google Scholar 

  28. Radin, N.S. (1988) Lipid Extraction, in Neuromethods, Vol. 7, Lipids and Related Compounds (Boulton, A.A., Baker, G.B., and Horrocks, L.A., eds.), pp. 1–61, Humana Press, Clifton, NJ.

    Google Scholar 

  29. Jolly, C.A., Hubbell, T., Behnke, W.D., and Schroeder, F. (1997) Fatty Acid Binding Protein: Stimulation of Microsomal Phosphatidic Acid Formation, Arch. Biochem. Biophys. 341, 112–121.

    Article  PubMed  CAS  Google Scholar 

  30. Marcheselli, V.L., Scott, B.L., Reddy, T.S., and Bazan, N.G. (1988) Quantitative Analysis of Acyl Group Composition of Brain Phospholipids, Neutral Lipids, and Free Fatty Acids, in Neuromethods, Vol. 7, Lipids and Related Compounds (Boulton, A.A., Baker, G.B., and Horrocks, L.A., eds.), pp. 83–110, Humana Press, Clifton, NJ.

    Google Scholar 

  31. Dugan, L.L., Demediuk, P., Pendley, C.E., II, and Horrocks, L.A. (1986) Separation of Phospholipids by High Pressure Liquid Chromatography: All Major Classes Including Ethanolamine and Choline Plasmalogens, and Most Minor Classes, Including Lysophosphatidylethanolamine, J. Chromatogr. 378, 317–327.

    PubMed  CAS  Google Scholar 

  32. Murphy, E.J., Stephens, R., Jurkowitz-Alexander, M., and Horrocks, L.A. (1993) Acidic Hydrolysis of Plasmalogens Followed by High-Performance Liquid Chromatography, Lipids 28, 565–568.

    Article  PubMed  CAS  Google Scholar 

  33. Rouser, G., Siakotos, A., and Fleischer, S. (1969) Quantitative Analysis of Phospholipids by Thin Layer Chromatography and Phosphorus Analysis of Spots, Lipids 1, 85–86.

    Google Scholar 

  34. Bowman, R.E., and Wolf, R.C. (1962) A Rapid and Specific Ultramicro Method for Total Serum Cholesterol, Clin. Chem. 8, 302–309.

    PubMed  CAS  Google Scholar 

  35. Brockerhoff, H. (1975) Determination of the Positional Distribution of Fatty Acids in Glycerolipids, Methods Enzymol. 35, 315–325.

    PubMed  CAS  Google Scholar 

  36. Gross, R.W. (1985) Identification of Plasmalogen as the Major Phospholipid Constituent of Cardiac Sarcoplasmic Reticulum, Biochemistry 24, 1662–1668.

    Article  PubMed  CAS  Google Scholar 

  37. Gross, R.W. (1984) High Plasmalogen and Arachidonic Acid Content of Canine Myocardial Sarcolemma: A Fast Atom Bombardment Mass Spectroscopic and Gas Chromatography-Mass Spectroscopic Characterization, Biochemistry 23, 158–165.

    Article  PubMed  CAS  Google Scholar 

  38. Horrocks, L.A. (1967) Composition of Myelin from Peripheral and Central Nervous System of the Squirrel Monkey, J. Lipid Res. 8, 569–576.

    PubMed  CAS  Google Scholar 

  39. Horrocks, L.A., and Sun, G.Y. (1972) Ethanolamine Plasmalogens, in Research Methods in Neurochemistry, Vol. 1 (Rodnight, R., and Marks, N., eds.), pp. 223–231, Plenum Press, New York.

    Google Scholar 

  40. Lin, D.S., Connor, W.E., Anderson, G.J., and Neuringer, M. (1990) Effects of Dietary n−3 Fatty Acids on the Phospholipid Molecular Species of Monkey Brain, J. Neurochem. 55 1200–1207.

    Article  PubMed  CAS  Google Scholar 

  41. Heemskerk, J.W., Feijge, M.A., Simonis, M.A., and Hornstra, G. (1995) Effects of Dietary Fatty Acids on Signal Transduction and Membrane Cholesterol Content in Rat Platelets, Biochim. Biophys. Acta 1255, 87–97.

    PubMed  Google Scholar 

  42. Greiner, R.S., Catalan, J.N., Moriguchi, T., and Salem, N., Jr. (2003) Docosapentaenoic Acid Does Not Completely Replace DHA in n−3 FA-Deficient Rats During Early Development, Lipids 38, 431–435.

    Article  PubMed  CAS  Google Scholar 

  43. Bourre, J.M., Dumont, O., Pascal, G., and Durand, G. (1993) Dietary α-Linolenic Acid at 1.3 g/kg Maintains Maximal Docosahexaenoic Acid Concentration in Brain, Heart and Liver of Adult Rats, J. Nutr. 123, 1313–1319.

    PubMed  CAS  Google Scholar 

  44. Stubbs, C.D., and Smith, A.D. (1984) The Modification of Mammalian Membrane Polyunsaturated Fatty Acid Composition in Relation to Membrane Fluidity and Function, Biochim. Biophys. Acta 779, 89–137.

    PubMed  CAS  Google Scholar 

  45. Clamp, A.G., Ladha, S., Clark, D.C., Grimble, R.F., and Lund, E.K. (1997) The Influence of Dietary Lipids on the Composition and Membrane Fluidity of Rat Hepatocyte Plasma Membrane, Lipids 32, 179–184.

    Article  PubMed  CAS  Google Scholar 

  46. Jump, D.B. (2002) The Biochemistry of n−3 Polyunsaturated Fatty Acids, J. Biol. Chem. 277, 8755–8758.

    Article  PubMed  CAS  Google Scholar 

  47. Marcheselli, V.L., Hong, S., Lukiw, W.J., Tian, X.H., Gronert, K., Musto, A., Hardy, M., Giminez, J.M., Chiang, N., Serhan, C.N., et al. (2003) Novel Docosanoids Inhibit Brain Ischemia-Reperfusion-Mediated Leukocyte Infiltration and Pro-inflammatory Gene Expression, J. Biol. Chem. 278, 43807–43817.

    Article  PubMed  CAS  Google Scholar 

  48. Zhao, G., Etherton, T.D., Martin, K.R., West, S.G., Gillies, P.J., and Kris-Etherton, P.M. (2004) Dietary α-Linolenic Acid Reduces Inflammatory and Lipid Cardiovascular Risk Factors in Hypercholesterolemic Men and Women, J. Nutr. 134, 2991–2997.

    PubMed  CAS  Google Scholar 

  49. Bemelmans, W.J.E., Broer, J., Feskens, E.J.M., Smit, A.J., Muskiet, F.A.J., Lefrandt, J.D., Bom, V.J.J., May, J.F., and Meyboom-de Jong, B. (2002) Effect of an Increased Intake of α-Linolenic Acid and Group Nutritional Education on Cardiovascular Risk Factors: The Mediterranean α-Linolenic Enriched Groningen Dietary Intervention (MARGARIN) Study, Am. J. Clin. Nutr. 75, 221–227.

    PubMed  CAS  Google Scholar 

  50. Djoussé, L., Pankow, J.S., Eckfeldt, J.H., Folsom, A.R., Hopkins, P.N., Province, M.A., Hong, Y., and Ellison, R.C. (2001) Relation Between Dietary Linolenic Acid and Coronary Artery Disease in the National Heart, Lung, and Blood Institute Family Heart Study, Am. J. Clin. Nutr. 74, 612–619.

    PubMed  Google Scholar 

  51. de Groot, R.H.M., Hornstra, G., van Houwelingen, A.C., and Roumen, F. (2004) Effect of α-Linolenic Acid Supplementation During Pregnancy on Maternal and Neonatal Polyunsaturated Fatty Acid Status and Pregnancy Outcome, Am. J. Clin. Nutr. 79, 251–260.

    PubMed  Google Scholar 

  52. Pawlosky, R.J., Hibbeln, J.R., Novotny, J.A., and Salem, N., Jr. (2001) Physiological Compartmental Analysis of α-Linolenic Acid Metabolism in Adult Humans, J. Lipid Res. 42, 1257–1265.

    PubMed  CAS  Google Scholar 

  53. Pawlosky, R.J., Ward, G., and Salem, N., Jr. (1996) Essential Fatty acid Uptake and Metabolism in the Developing Rodent Brain, Lipids 31, S103-S107.

    PubMed  CAS  Google Scholar 

  54. Dhopeshwarkar, G.A., and Subramanian, C. (1976) Biosynthesis of Polyunsaturated Fatty Acids in the Developing Brain: I. Metabolic Transformations of Intracranially Administered 1–14C Linolenic Acid, Lipids 11, 67–71.

    Article  PubMed  CAS  Google Scholar 

  55. Cho, H.P., Nakamura, M., and Clarke, S.D. (1999) Cloning, Expression, and Fatty Acid Regulation of the Human Δ-5 Desaturase, J. Biol. Chem. 274, 37335–37339.

    Article  PubMed  CAS  Google Scholar 

  56. Cho, H.P., Nakamura, M.T., and Clarke, S.D. (1999) Cloning, Expression, and Nutritional Regulation of the Mammalian Δ-6 Desaturase, J. Biol. Chem. 274, 471–477.

    Article  PubMed  CAS  Google Scholar 

  57. Williard, D.E., Harmon, S.D., Kaduce, T.L., Preuss, M., Moore, S.A., Robbins, M.E.C., and Spector, A.A. (2001) Docosahexaenoic Acid Synthesis from n−3 Polyunsaturated Fatty Acids in Differentiated Rat Brain Astrocytes, J. Lipid Res. 42, 1368–1376.

    PubMed  CAS  Google Scholar 

  58. Bernoud, N., Fenart, L., Bénistant, C., Pageaux, J.F., Dehouck, M.P., Molière, P., Lagarde, M., Cecchelli, R., and Lecerf, J. (1998) Astrocytes Are Mainly Responsible for the Polyunsaturated Fatty Acid Enrichment in Blood-Brain Barrier Endothelial Cells in vitro, J. Lipid Res. 39, 1816–1824.

    PubMed  CAS  Google Scholar 

  59. Mohrmauer, H., Christiansen, K., Gan, M.V., Deubig, M., and Holman, R.T. (1967) Chain Elongation of Linoleic Acid and Its Inhibition by Other Fatty Acids in vitro, J. Biol. Chem. 242, 4507–4514.

    Google Scholar 

  60. Watson, A.D., Leitinger, N., Navab, M., Faull, K.F., Hörkkö, S., Witztum, J.L., Palinski, W., Schwenke, D., Salomon, R.G., Sha, W., et al. (1997) Structural Identification by Mass Spectrometry of Oxidized Phospholipids in Minimally Oxidized Low Density Lipoprotein That Induce Monocyte/Endothelial Interactions and Evidence for Their Presence in vivo, J. Biol. Chem. 272, 13597–13607.

    Article  PubMed  CAS  Google Scholar 

  61. Calder, P.C. (2001) Polyunsaturated Fatty Acids, Inflammation, and Immunity, Lipids 36, 1007–1024.

    Article  PubMed  CAS  Google Scholar 

  62. Rosenberger, T.A., Villacreses, N.E., Hovda, J.T., Boestti, F., Weerasinghe, G., Wine, R.N., Harry, G.J., and Rapoport, S.I. (2004) Rat Brain Arachidonic Acid Metabolism Is Increased by a 6-Day Intracerebral Ventricular Infusion of Bacterial Lipopolysaccharide, J. Neutrochem. 88, 1168–1178.

    Article  CAS  Google Scholar 

  63. Lee, H., Villacreses, N.E., Rapoport, S.I., and Rosenberger, T.A. (2004) In vivo Imaging Detects a Transient Increase in Brain Arachidonic Acid Metabolism: A Potential Marker of Neuroinflammation, J. Neurochem. 91, 936–945.

    Article  PubMed  CAS  Google Scholar 

  64. Avis, I., Hong, S.H., Martinez, A., Moody, T., Choi, Y.H., Trepel, J., Das, R., Jett, M., and Mulshine, J.L. (2001) Five-Lipoxygenase Inhibitors Can Mediate Apoptosis in Human breast Cancer Cell Lines Through Complex Eicosanoid Interactions, FASEB J. 15, 2007–2009.

    PubMed  CAS  Google Scholar 

  65. Khuu Thi-Dinh, K.L., Demarne, Y., Nicolas, C., and Lhuillery, C. (1990) Effect of Dietary Fat on Phospholipid Class Distribution and Fatty Acid Composition in Rat Fat Cell Plasma Membrane, Lipids 25, 278–283.

    PubMed  CAS  Google Scholar 

  66. Turini, M.E., Thomson, A.B., and Clandinin, M.T. (1991) Lipid Composition and Peroxide Levels of Mucosal Cells in the Rat Large Intestine in Relation to Dietary Fat, Lipids 26, 431–440.

    Article  PubMed  CAS  Google Scholar 

  67. Gibson, R.A., Neumann, M.A., Burnard, S.L., Rinaldi, J.A., Patten, G.S., and McMurchie, E.J. (1992) The Effect of Dietary Supplementation with Eicosapentaenoic Acid on the Phospholipid and Fatty Acid Composition of Erythrocytes of Marmoset, Lipids 27, 169–176.

    Article  PubMed  CAS  Google Scholar 

  68. Oliveros, L.B., Videla, A.M., Ramirez, D.C., and Gimenez, M.S. (2003) Dietary Fat Saturation Produces Lipid Modifications in Peritoneal Macrophages of Mouse, J. Nutr. Biochem. 14, 370–377.

    Article  PubMed  CAS  Google Scholar 

  69. Jefferson, J.R., Powell, D.M., Rymaszewski, Z., Kukowska-Latallo, J., Lowe, J.B., and Schroeder, F. (1990) Altered Membrane Structure in Transfected Mouse L-Cell Fibroblasts Expressing Rat Liver Fatty Acid Binding Protein, J. Biol. Chem. 265, 11062–11068.

    PubMed  CAS  Google Scholar 

  70. Woodford, J.K., Jefferson, J.R., Wood, W.G., Hubbell, T., and Schroeder, F. (1993) Expression of Liver Fatty Acid Binding Protein Alters Membrane Lipid Composition and Structure in Transfected L-Cell Fibroblasts, Biochim. Biophys. Acta 1145, 257–265.

    Article  PubMed  CAS  Google Scholar 

  71. Murphy, E.J., Prows, D., Stiles, T., and Schroeder, F. (2000) Phospholipid and Phospholipid Fatty Acid Composition of L-Cell Fibroblast: Effect of Intestinal and Liver Fatty Acid Binding Protein, Lipids 35, 729–738.

    Article  PubMed  CAS  Google Scholar 

  72. Arbuckle, L.D., and Innis, S.M. (1992) Docosahexaenoic Acid in Developing Brain and Retina of Piglets Fed High or Low α-Linolenate Formula With and Without Fish Oil, Lipids 27, 89–93.

    Article  PubMed  CAS  Google Scholar 

  73. Valenzuela, A., von Bernhardi, R., Valenzuela, V., Ramírez, G., Alarcón, R., Sanjueza, J., and Nieto, S. (2004) Supplementation of Female Rats with α-Linolenic Acid or Docosahexaenoic Acid Leads to the Same Omega-6/Omega-3 LC-PUFA Accretion in Mother Tissues and in Fetal and Newborn Brains, Ann. Nutr. Metab. 48, 28–35.

    Article  PubMed  CAS  Google Scholar 

  74. Lefkowitz, W., Lim, S.-Y., Lin, Y., and Salem, N., Jr. (2005) Where Does the Developing Brain Obtain Its Docosahexaenoic Acid? Relative Contributions of Dietary α-Linolenic Acid, Docosahexaenoic Acid, and Body Stores in the Developing Rat, Pediatr. Res. 57, 157–165.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric J. Murphy.

About this article

Cite this article

Barceló-Coblijn, G., Collison, L.W., Jolly, C.A. et al. Dietary α-linolenic acid increases brain but not heart and liver docosahexaenoic acid levels. Lipids 40, 787–798 (2005). https://doi.org/10.1007/s11745-005-1440-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-005-1440-y

Keywords

Navigation