Skip to main content
Log in

Dose effect of α-linolenic acid on PUFA conversion, bioavailability, and storage in the hamster

  • Articles
  • Published:
Lipids

Abstract

If an increased consumption of α-linolenic acid (ALA) is to be promoted in parallel with that of n−3 long-chain-rich food, it is necessary to consider to what extent dietary ALA can be absorbed, transported, stored, and converted into long-chain derivatives. We investigated these processes in male hamsters, over a broad range of supply as linseed oil (0.37, 3.5, 6.9, and 14.6% energy). Linoleic acid (LA) was kept constant (8.5% energy), and the LA/ALA ratio was varied from 22.5 to 0.6. The apparent absorption of individual FA was very high (>96%), and that of ALA remained almost maximum even at the largest supply (99.5%). The capacity for ALA transport and storage had no limitation over the chosen range of dietary intake. Indeed, ALA intake was significantly correlated with ALA level not only in cholesteryl esters (from 0.3 to 9.7% of total FA) but also in plasma phospholipids and red blood cells (RBC), which makes blood components extremely reliable as biomarkers of ALA consumption. Similarly, ALA storage in adipose tissue increased from 0.85 to 14% of total FA and was highly correlated with ALA intake. As for bioconversion, dietary ALA failed to increase 22∶6n−3, decreased 20∶4n−6, and efficiently increased 20∶5n−3 (EPA) in RBC and cardiomyocytes. EPA accumulation did not tend to plateau, in accordance with identical activities of Δ5- and Δ6-desaturases in all groups. Dietary supply of ALA was therefore a very efficient means of improving the 20∶4n−6 to 20∶5n−3 balance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AA:

arachidonic acid

ALA:

α-linolenic acid

CE:

cholesteryl ester

DPA:

docosapentaenoic acid

EAT:

epididymal adipose tissue

LA:

linoleic acid

LC:

long chain

MUFA:

monounsaturated FA

PL:

phospholipid

RBC:

red blood cell

SFA:

saturated FA

TFA:

trans FA

References

  1. Simopoulos, A.P. (2001) n−3 Fatty Acids and Human Health: Defining Strategies for Public Policy, Lipids 36 (Suppl.), S83-S89.

    PubMed  CAS  Google Scholar 

  2. Gil, A. (2002) Polyunsaturated Fatty Acids and Inflammatory Diseases, Biomed. Pharmacother. 56, 388–396.

    Article  PubMed  CAS  Google Scholar 

  3. Renaud, S., de Lorgeril, M., Delaye, J., Guidollet, J., Jacquard, F., Mamelle, N., Martin, J.L., Monjaud, I., Salen, P., and Toubol, P. (1995) Cretan Mediterranean Diet for Prevention of Coronary Heart Disease, Am. J. Clin. Nutr. 61, 1360S-1367S.

    PubMed  CAS  Google Scholar 

  4. Nordoy, A., Marchioli, R., Arnesen, H., and Videbaek, J. (2001) n−3 Polyunsaturated Fatty Acids and Cardiovascular Diseases, Lipids 36 (Suppl.), S127-S129.

    PubMed  CAS  Google Scholar 

  5. de Lorgeril, M., Renaud, S., Mamelle, N., Salen, P., Martin, J.L., Monjaud, I., Guidollet, J., Touboul, P., and Delaye, J. (1994) Mediterranean alpha-Linolenic Acid-rich Diet in Secondary Prevention of Coronary Heart Disease, Lancet 343, 1454–1459.

    Article  PubMed  Google Scholar 

  6. Ministry of Agriculture, Fisheries and Food (1997) Dietary Intake of Iodine and Fatty Acids, Food Information Surveillance Sheet No. 127, Ministry of Agriculture, Fisheries and Food, London.

    Google Scholar 

  7. Simopoulos, A.P. (2000) Human Requirement for n−3 Polyunsaturated Fatty Acids, Poult. Sci. 79, 961–970.

    PubMed  CAS  Google Scholar 

  8. Legrand, P., Bourre, J.M., Descomps, B., Durand, G., and Renaud, S. (2001) Lipides, in Apports Nutritionnels Conseillés pour la Population Française (Martin, A., ed.), Vol. 1, pp. 63–82, Lavoisier, Paris.

    Google Scholar 

  9. Combe, N., and Boué, C. (2001) Apports Alimentaires en Acide Linoleique et α-Linolénique d'une Population d'Aquitaine, Oléagineux Corps Gras Lipides 8, 118–121.

    CAS  Google Scholar 

  10. Harel, Z., Riggs, S., Vaz, R., White, L., and Menzies, G. (2001) Omega-3 Polyunsaturated Fatty Acids in Adolescents: Knowledge and Consumption, J. Adolesc. Health 28, 10–15.

    Article  PubMed  CAS  Google Scholar 

  11. Kris-Etherton, P.M., Taylor, D.S., Yu-Poth, S., Huth, P., Moriarty, K., Fishell, V., Hargrove, R.L., Zhao, G., and Etherton, T.D. (2000) Polyunsaturated Fatty Acids in the Food Chain in the United States, Am. J. Clin. Nutr. 71, 179S-188S.

    PubMed  CAS  Google Scholar 

  12. Mohrhauer, H., and Holman, R.T. (1963) The Effect of Dose Level of Essential Fatty Acids upon Fatty Acid Composition of the Rat Liver, J. Lipid Res. 58, 151–159.

    Google Scholar 

  13. Pudelkewicz, C., Seufert, J., and Holman, R.T. (1968) Requirements of the Female Rat for Linoleic and Linolenic Acids, J. Nutr. 94, 138–146.

    PubMed  CAS  Google Scholar 

  14. Vermunt, S.H., Mensink, R.P., Simonis, M.M., and Hornstra, G. (2000) Effects of Dietary α-Linolenic Acid on the Conversion and Oxidation of 13C-α-Linolenic Acid, Lipids 35, 137–142.

    PubMed  CAS  Google Scholar 

  15. Sinclair, A.J., Attar-Bashi, N.M., and Li, D. (2002) What Is the Role of α-Linolenic Acid for Mammals? Lipids 37, 1113–1123.

    Article  PubMed  CAS  Google Scholar 

  16. Surette, M.E., Whelan, J., Lu, G.P., Broughton, K.S., and Kinsella, J.E. (1992) Dependence on Dietary Cholesterol for n−3 Polyunsaturated Fatty Acid-Induced Changes in Plasma Cholesterol in the Syrian Hamster, J. Lipid. Res. 33, 263–271.

    PubMed  CAS  Google Scholar 

  17. Surette, M.E., Whelan, J., Lu, G., Hardard'ottir, I., and Kinsella, J.E. (1995) Dietary n−3 Polyunsaturated Fatty Acids Modify Syrian Hamster Platelet and Macrophage Phospholipid Fatty Acyl Composition and Eicosanoid Synthesis: A Controlled Study, Biochim. Biophys. Acta 1255, 185–191.

    PubMed  Google Scholar 

  18. Spady, D.K., Kearney, D.M., and Hobbs, H.H. (1999) Polyunsaturated Fatty Acids Up-Regulate Hepatic Scavenger Receptor B1 (SR-BI) Expression and HDL Cholesteryl Ester Uptake in the Hamster, J. Lipid Res. 40, 1384–1394.

    PubMed  CAS  Google Scholar 

  19. Folch, J., Lees, M., and Sloane Stanley, G.H. (1957) A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues, J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  20. Morisson, W., and Smith, L. (1964) Preparation of Fatty Acid Methyl Esters and Dimethylacetals from Lipids with Boron Fluoride Methanol, J. Lipid Res. 5, 600–608.

    Google Scholar 

  21. Boué, C., Combe, N., Billeaud, C., Mignerot, C., Entressangles, B., Thery, G., Geoffrion, H., Brun, J.L., Dallay, D., and Leng, J.J. (2000) Trans Fatty Acids in Adipose Tissue of French Women in Relation to Their Dietary Sources, Lipids 35, 561–566.

    Article  PubMed  Google Scholar 

  22. Lepage, G., and Roy, C.C. (1986) Direct Transesterification of All Classes of Lipids in a One-Step Reaction, J. Lipid Res. 27, 114–120.

    PubMed  CAS  Google Scholar 

  23. Guillou, H., Martin, P., Jan, S., D'Andrea, S., Roulet, A., Catheline, D., Rioux, V., Pineau, T. and Legrand, P. (2002) Comparative Effect of Fenofibrate on Hepatic Desaturases in Wild-Type and Peroxisome Proliferator-Activated Receptor α-Deficient Mice, Lipids 37, 981–989.

    Article  PubMed  CAS  Google Scholar 

  24. Wood, R., and Lee, T. (1983) High-Performance Liquid Chromatography of Fatty Acids: Quantitative Analysis of Saturated, Monoenoic, Polyenoic and Geometrical Isomers, J. Chromatogr. A 254, 237–246.

    Article  CAS  Google Scholar 

  25. Rioux, V., Catheline, D., Bouriel, M., and Legrand, P. (1999) High Performance Liquid Chromatography of Fatty Acids as Naphthacyl Derivatives, Analusis 27, 186–193.

    Article  CAS  Google Scholar 

  26. Burdge, G.C., Jones, A.E., and Wootton, S.A. (2002) Eicosapentaenoic and Docosapentaenoic Acids Are the Principal Products of α-Linolenic Acid Metabolism in Young Men, Br. J. Nutr. 88, 355–363.

    PubMed  CAS  Google Scholar 

  27. Leyton, J., Drury, P.J., and Crawford, M.A. (1987) Differential Oxidation of Saturated and Unsaturated Fatty Acids in vivo in the Rat, Br. J. Nutr. 57, 383–393.

    Article  PubMed  CAS  Google Scholar 

  28. Burdge, G.C., and Wootton, S.A. (2002) Conversion of α-Linolenic Acid to Eicosapentaenoic, Docosapentaenoic and Docosahexaenoic Acids in Young Women, Br. J. Nutr. 88, 411–420.

    Article  PubMed  CAS  Google Scholar 

  29. Fu, Z., and Sinclair, A.J. (2000) Increased α-Linolenic Acid Intake Increases Tissue α-Linolenic Acid Content and Apparent Oxidation with Little Effect on Tissue Docosahexaenoic Acid in the Guinea Pig, Lipids 35, 395–400.

    Article  PubMed  CAS  Google Scholar 

  30. Burdge, G.C., Finnegan, Y.E., Minihane, A.M., Williams, C.M., and Wootton, S.A. (2003) Effect of Altered Dietary n−3 Fatty Acid Intake upon Plasma Lipid Fatty Acid Composition, Conversion of [13C]α-Linolenic Acid to Longer-Chain Fatty Acids and Partitioning Towards β-Oxidation in Older Men, Br. J. Nutr. 90, 311–321.

    Article  PubMed  CAS  Google Scholar 

  31. Emken, E.A., Adlof, R.O., and Gulley, R.M. (1994) Dietary Linoleic Acid Influences Desaturation and Acylation of Deuterium-Labeled Linoleic and Linolenic Acids in Young Adult Males, Biochim. Biophys. Acta 1213, 277–288.

    PubMed  CAS  Google Scholar 

  32. Salem, N., Jr., Pawlosky, R., Wegher, B., and Hibbeln, J. (1999) In vivo Conversion of Linoleic Acid to Arachidonic Acid in Human Adults, Prostaglandins Leukot. Essent. Fatty Acids 60, 407–410.

    Article  PubMed  CAS  Google Scholar 

  33. Pawlosky, R.J., Hibbeln, J.R., Lin, Y., Goodson, S., Riggs, P., Sebring, N., Brown, G.L., and Salem, N., Jr. (2003) Effects of Beef- and Fish-Based Diets on the Kinetics of n−3 Fatty Acid Metabolism in Human Subjects, Am. J. Clin. Nutr. 77, 565–572.

    PubMed  CAS  Google Scholar 

  34. Pawlosky, R.J., Hibbeln, J.R., Novotny, J.A., and Salem, N., Jr. (2001) Physiological Compartmental Analysis of α-Linolenic Acid Metabolism in Adult Humans, J. Lipid Res. 42, 1257–1265.

    PubMed  CAS  Google Scholar 

  35. Sprecher, H. (2002) The Roles of Anabolic and Catabolic Reactions in the Synthesis and Recycling of Polyunsaturated Fatty Acids, Prostaglandins Leukot. Essent. Fatty Acids 67, 79–83.

    Article  PubMed  CAS  Google Scholar 

  36. Brenner, R.R., and Peluffo, R.O. (1966) Effect of Saturated and Unsaturated Fatty Acids on the Desaturation in vitro of Palmitic, Stearic, Oleic, Linoleic, and Linolenic Acids, J. Biol. Chem. 241, 5213–5219.

    PubMed  CAS  Google Scholar 

  37. Simopoulos, A.P., Kifer, R.R., and Wykes, A.A. (1991) Omega 3 Fatty Acids: Research Advances and Support in the Field Since June 1985 (worldwide), World Rev. Nutr. Diet 66, 51–71.

    PubMed  CAS  Google Scholar 

  38. Gerster, H. (1998) Can Adults Adequately Convert α-Linolenic Acid (18∶3n−3) to Eicosapentaenoic Acid (20∶5n−3) and Docosahexaenoic Acid (22∶6n−3)? Int. J. Vitam. Nutr. Res. 68, 159–173.

    PubMed  CAS  Google Scholar 

  39. Blank, C., Neumann, M.A., Makrides, M., and Gibson, R.A. (2002) Optimizing DHA Levels in Piglets by Lowering the Linoleic Acid to α-Linolenic Acid Ratio, J. Lipid Res. 43, 1537–1543.

    Article  PubMed  CAS  Google Scholar 

  40. Sprecher, H. (2000) Metabolism of Highly Unsaturated n−3 and n−6 Fatty Acids, Biochim. Biophys. Acta 1486, 219–231.

    PubMed  CAS  Google Scholar 

  41. D'Andrea, S., Guillou, H., Jan, S., Catheline, D., Thibault, J.N., Bouriel, M., Rioux, V., and Legrand, P. (2002). The Same Rat Δ6-Desaturase Not Only Acts on 18- but Also on 24-Carbon Fatty Acids in Very-Long-Chain Polyunsaturated Fatty Acid Biosynthesis, Biochem. J. 364, 49–55.

    PubMed  Google Scholar 

  42. Voss, A., Reinhart, M., Sankarappa, S., and Sprecher, H. (1991) The Metabolism of 7,10,13,16,19-Docosapentaenoic Acid to 4,7,10,13,16,19-Docosahexaenoic Acid in Rat Liver Is Independent of a 4-Desaturase, J. Biol. Chem. 266, 19995–20000.

    PubMed  CAS  Google Scholar 

  43. Geiger, M., Mohammed, B.S., Sankarappa, S., and Sprecher, H. (1993) Studies to Determine If Rat Liver Contains Chain-Length-Specific Acyl-CoA 6-Desaturases, Biochim. Biophys. Acta 1170, 137–142.

    PubMed  CAS  Google Scholar 

  44. Ide, T., Murata, M., and Sugano, M. (1996) Stimulation of the Activities of Hepatic Fatty Acid Oxidation Enzymes by Dietary Fat Rich in α-Linolenic Acid in Rats, J. Lipid Res. 37, 448–463.

    PubMed  CAS  Google Scholar 

  45. Liautaud, S., Grynberg, A., Mourot, J., and Athias, P. (1991) Fatty Acids of Hearts from Rats Fed Linseed or Sunflower Oil and of Cultured Cardiomyocytes Grown on Their Sera, Cardioscience 2, 55–61.

    PubMed  CAS  Google Scholar 

  46. McLennan, P.L., and Dallimore, J.A. (1995) Dietary Canola Oil Modifies Myocardial Fatty Acids and Inhibits Cardiac Arrhythmias in Rats, J. Nutr. 125, 1003–1009.

    PubMed  CAS  Google Scholar 

  47. Leaf, A., Xiao, Y.F., Kang, J.X., and Billman, G.E. (2003) Prevention of Sudden Cardiac Death by n−3 Polyunsaturated Fatty Acids, Pharmacol. Ther. 98, 355–377.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Morise.

About this article

Cite this article

Morise, A., Combe, N., Boué, C. et al. Dose effect of α-linolenic acid on PUFA conversion, bioavailability, and storage in the hamster. Lipids 39, 325–334 (2004). https://doi.org/10.1007/s11745-004-1236-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-004-1236-0

Keywords

Navigation