Skip to main content
Log in

Transcriptome profiling of unigenes participating in salt tolerance in purslane (Portulaca oleracea) under salinity stress

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The second generation of RNA-sequencing was done on the leaves of salt-tolerant (‘PL’) and salt-sensitive (‘LCL’) purslane (Portulaca oleracea) genotypes. Twenty-four RNA libraries were obtained at four different time intervals (0 h, 1 h, 24 h, and 72 h) during salinity stress. Compared with control, at 1 h, 24 h, and 72 h of 200 mM NaCl treatment, 7407, 2499, and 7597 of differential expression genes (DEGs) were qualified in ‘LCL’, and 8861, 7974, and 10349 in ‘PL’ the Kyoto Encyclopedia of Genes and Genomes (KEGG)- and Gene Ontology-based pathway studies displayed that salt stress response of purslane was a complex metabolic regulation process. Two kinds of analyses, especially KEGG, showed that salt stress affected gene expression linked with metabolism of fatty acid. Two fatty acid metabolism pathways, “α-linolenic acid metabolism” and “fatty acid degradation” were downregulated in two genotypes at 24 h vs 0 h and 72 h vs 0 h of NaCl stress. Another fatty acid metabolism pathway, “biosynthesis of unsaturated fatty acids”, was only upregulated at 24 h vs 0 h and 72 h vs 0 h of NaCl stress in ‘PL’. Upregulated expressions of FAD2, SAD, ACX2, and CLKR27 in “biosynthesis of unsaturated fatty acids” pathway might be associated with salt tolerance of ‘PL’ in purslane. Among these, upregulation of FAD2 and SAD might be beneficial to the accumulation of polyunsaturated fatty acids, upregulation of ACX2 might promote the plant growth under salt stress in salt-tolerant purslane genotype. The results are of great significance for further screening salt-tolerant and high-quality purslane genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

Abbreviations

ACX2:

Acyl-coenzyme A oxidase 2

ALA:

α-Linolenic acid

CLKR27:

3-Oxoacyl-[acyl-carrier-protein] reductase

DEGs:

Differential expression genes

ER:

Endoplasmic reticulum

FAD:

Fatty acid desaturase

FPKM:

Fragments per kilobase of transcript per million mapped reads

GO:

Gene ontology

GLA:

γ-Linolenic acid

IAA:

Indole-3-acetic acid

IBA:

Indole-3-butyric acid

KEGG:

Kyoto Encyclopedia of Genes and Genomes

LA:

Linoleic acid

PUFA:

Polyunsaturated fatty acid

RWC:

Relative water content

SAD:

Stearoyl-ACP desaturase

UFA:

Unsaturated fatty acid

References

  • Adham AR, Zolman BK, Millius A, Bartel B (2005) Mutations in Arabidopsis acyl-CoA oxidase genes reveal distinct and overlapping roles in β-oxidation. Plant J 41(6):859–874

    Article  CAS  PubMed  Google Scholar 

  • Allakhverdiev SI (2001) Unsaturated fatty acids in membrane lipids protect the photosynthetic machinery against salt-induced damage in Synechococcus. Plant Physiol 125(4):1842–1853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allakhverdiev SI, Nishiyama Y, Suzuki I, Tasaka Y, Murata N (1999) Genetic engineering of the unsaturation of fatty acids in membrane lipids alters the tolerance of Synechocystis to salt stress. Proc Natl Acad Sci USA 96(10):5862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An M, Mou S, Zhang X, Zheng Z, Ye N, Wang D, Zhang W, Miao J (2013) Expression of fatty acid desaturase genes and fatty acid accumulation in Chlamydomonas sp. ICE-L under salt stress. Bioresou Technol 149:77–83

    Article  CAS  Google Scholar 

  • Bao Y, Wang C, Jiang C, Pan J, Zhang G, Liu H, Zhang H (2014) The tumor necrosis factor receptor-associated factor (TRAF)-like family protein SEVEN IN ABSENTIA 2 (SINA2) promotes drought tolerance in an ABA-dependent manner in Arabidopsis. New Phytol 202:174–187

    Article  CAS  PubMed  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Claes B, Dekeyser R, Villarroel R, Van den Bulcke M, Bauw G, Van Montagu M, Caplan A (1990) Characterization of a rice gene showing organ-specific expression in response to salt stress and drought. Plant Cell 2(1):19–27

    CAS  PubMed  PubMed Central  Google Scholar 

  • DaCosta M, Wang ZL, Huang BR (2004) Physiological adaptation of Kentucky bluegrass to localized soil drying. Crop Sci 44(4):1307–1314

    Article  CAS  Google Scholar 

  • D’Andrea RM, Triassi A, Casas MI, Andreo CS, Lara MV (2015) Identification of genes involved in the drought adaptation and recovery in Portulaca oleracea by differential display. Plant Physiol Biochem 90:38–49

    Article  CAS  PubMed  Google Scholar 

  • Feng J, Dong Y, Liu W, He Q, Daud M, Chen J, Zhu S (2017) Genome-wide identification of membrane-bound fatty acid desaturase genes in Gossypium hirsutum and their expressions during abiotic stress. Sci Rep 7:45711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira J, Zwinderman A (2006) On the Benjamini-Hochberg method. Ann Stat 34(4):1827–1849

    Article  Google Scholar 

  • Finkelstein RR, Lynch TJ (2000) The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12(4):599–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28(23):3150–3152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goel P, Bhuria M, Sinha R, Sharma TR, Singh AK (2019) Promising transcription factors for salt and drought tolerance in plants. In: Singh SP, Upadhyay SK, Pandey A, Kumar S (eds) Molecular approaches in plant biology and environmental challenges. Springer, Singapore, pp 7–50

  • Graham IA (2008) Seed storage oil mobilization. Annu Rev Plant Biol 59:115–142

    Article  CAS  PubMed  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics 2014:701596

    Article  PubMed  PubMed Central  Google Scholar 

  • Hitz WD, Carlson TJ, Booth JR Jr, Kinney AJ, Stecca KL, Yadav NS (1994) Cloning of a higher-plant plastid ω-6 fatty acid desaturase cDNA and its expression in a cyanobacterium. Plant Physiol 105(2):635–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iba K, Gibson S, Nishiuchi T, Fuse T, Nishimura M, Arondel V, Hugly S, Somerville C (1993) A gene encoding a chloroplast ω-3 fatty acid desaturase complements alterations in fatty acid desaturation and chloroplast copy number of the fad7 mutant of Arabidopsis thaliana. J Biol Chem 268(32):24099–24105

    Article  CAS  PubMed  Google Scholar 

  • Im YJ, Han O, Chung GC, Cho BH (2002) Antisense expression of an Arabidopsis ω-3 fatty acid desaturase gene reduces salt/drought tolerance in transgenic tobacco plants. Mol Cells 13(2):264–271

    CAS  PubMed  Google Scholar 

  • Jakoby M, Weisshaar B, Dröge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7(3):106–111

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Ma S, Ye N, Jiang M, Cao J, Zhang J (2017) WRKY transcription factors in plant responses to stresses. J Integr Plant Biol 59:86–101

    Article  CAS  PubMed  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63(4):1593–1608

    Article  CAS  PubMed  Google Scholar 

  • Kumamoto JSRW, Clerx WA, Matsumura WA, Layfield D, Grieve CM (1990) Purslane: a potential new vegetable crop rich in omega-3 fatty acid with a controllable sodium chloride content. In: Proceedings of the First International Conference on New Industrial Crops and Products, Riverside CA Eds H H Naqvi, A Estilai and I P Ting Univ of Arizona, Tucson, AZ, pp 229–233

  • Lei A, Chen H, Shen G, Hu Z, Chen L, Wang J (2012) Expression of fatty acid synthesis genes and fatty acid accumulation in Haematococcus pluvialis under different stressors. Biotechnol Iofuels 5(1):18

    CAS  Google Scholar 

  • Lenka SK, Katiyar A, Chinnusamy V, Bansal KC (2011) Comparative analysis of drought-responsive transcriptome in Indica rice genotypes with contrasting drought tolerance. Plant Biotechnol J 9(3):315–327

    Article  CAS  PubMed  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform 12:323

    Article  CAS  Google Scholar 

  • Li J, Essemine J, Shang C, Zhang H, Zhu X, Yu J, Chen G, Qu M, Sun D (2020) Combined proteomics and metabolism analysis unravels prominent roles of antioxidant system in the prevention of alfalfa (Medicago sativa L.) against salt stress. Int J Mol Sci 21:909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li-Beisson Y et al (2013) Acyl-lipid metabolism. Arabidopsis Book 11:e0161

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin J, Dang F, Chen Y, Guan D, He S (2019) CaWRKY27 negatively regulates salt and osmotic stress responses in pepper. Plant Physiol Biochem 145:43–51

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Li S, Wang M, Xia G (2012) A transcriptomic analysis reveals the nature of salinity tolerance of a wheat introgression line. Plant Mol Biol 78:159–169

    Article  CAS  PubMed  Google Scholar 

  • Long W, Zou X, Zhang X (2015) Transcriptome Analysis of canola (Brassica napus) under salt stress at the germination stage. PLoS ONE 10:e0116217

    Article  PubMed  PubMed Central  Google Scholar 

  • Madi L, Wang X, Kobiler I, Lichter A, Prusky D (2003) Stress on avocado fruits regulates Δ9-stearoyl ACP desaturase expression, fatty acid composition, antifungal diene level and resistance to Colletotrichum gloeosporioides attack. Physiol Mol Plant Pathol 62:277–283

    Article  CAS  Google Scholar 

  • Mata-Pérez C, Sánchez-Calvo B, Padilla MN, Begara-Morales JC, Luque F, Melguizo M, Jiménez-Ruiz J, Fierro-Risco J, Peñas-Sanjuán A, Valderrama R (2016) Nitro-fatty acids in plant signaling: nitro-linolenic acid induces the molecular chaperone network in Arabidopsis. Plant Physiol 170(2):686–701

    Article  PubMed  Google Scholar 

  • Mendes A, Kelly AA, van Erp H, Shaw E, Powers SJ, Kurup S, Eastmond PJ (2013) bZIP67 regulates the omega-3 fatty acid content of Arabidopsis seed oil by activating FATTY ACID DESATURASE3. Plant Cell 25(8):3104–3116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulry KR, Hanson BA, Dudle DA (2015) Alternative strategies in response to saline stress in two varieties of Portulaca oleracea (Purslane). PLoS ONE 10(9):e0138723

    Article  PubMed  PubMed Central  Google Scholar 

  • Okuley J, Lightner J, Feldmann K, Yadav N, Lark E (1994) Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell 6(1):147–158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reed DW, Schafer UA, Covello PS (2000) Characterization of the Brassica napus extraplastidial linoleate desaturase by expression in Saccharomyces cerevisiae. Plant Physiol 122(3):715–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Vargas S, Sánchez-García A, Martínez-Rivas JM, Prieto JA, Randez-Gil F (2007) Fluidization of membrane lipids enhances the tolerance of Saccharomyces cerevisiae to freezing and salt stress. Appl Environ Microbiol 73(1):110–116

    Article  PubMed  Google Scholar 

  • Rylott EL, Hooks M, Graham IA (2001) Co-ordinate regulation of genes involved in storage lipid mobilization in Arabidopsis thaliana. Biochem Soc Trans 29(2):283–286

    Article  CAS  PubMed  Google Scholar 

  • Rylott EL, Eastmond PJ, Gilday AD, Slocombe SP, Larson TR, Baker A, Graham IA (2006) The Arabidopsis thaliana multifunctional protein gene (MFP2) of peroxisomal β-oxidation is essential for seedling establishment. Plant J 45(6):930–941

    Article  CAS  PubMed  Google Scholar 

  • Simopoulos AP (1986) Purslane: a terrestrial source of omega-3 fatty acids. New Engl J Med 315(13):833

    CAS  PubMed  Google Scholar 

  • Simopoulos AP, Norman HA, Gillaspy JE (1995) Purslane in human nutrition and its potential for world agriculture. Plants Hum Nutr 77:47–74

    Article  CAS  Google Scholar 

  • Song G, Li X, Munir R, Khan AR, Azhar W, Yasin MU, Jiang Q, Bancroft I, Gan Y (2020) The WRKY6 transcription factor affects seed oil accumulation and alters fatty acid compositions in Arabidopsis thaliana. Physiol Plant 169(4):612–624

    Article  CAS  PubMed  Google Scholar 

  • Strader LC, Culler AH, Cohen JD, Bartel B (2010) Conversion of endogenous indole-3-butyric acid to indole-3-acetic acid drives cell expansion in Arabidopsis seedlings. Plant Physiol 153(4):1577–1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sui N (2010) Increase in unsaturated fatty acids in membrane lipids of Suaeda salsa L. enhances protection of photosystem II under high salinity. Photosynthetica 48(4):623–629

    Article  CAS  Google Scholar 

  • Sui N, Han G (2014) Salt-induced photoinhibition of PSII is alleviated in halophyte Thellungiella halophila by increases of unsaturated fatty acids in membrane lipids. Acta Physiol Plant 36(4):983–992

    Article  CAS  Google Scholar 

  • Sui N, Wang Y, Liu S, Yang Z, Wang F, Wan S (2018) Transcriptomic and physiological evidence for the relationship between unsaturated fatty acid and salt stress in peanut. Front Plant Sci 9:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Teixeira M, Carvalho IS (2009) Effects of salt stress on purslane (Portulaca oleracea) nutrition. Ann Appl Biol 154(1):77–86

    Article  CAS  Google Scholar 

  • Uddin M, Juraimi AS, Hossain MS, Nahar M, Un A, Ali M, Rahman M (2014) Purslane weed (Portulaca oleracea): a prospective plant source of nutrition, omega-3 fatty acid, and antioxidant attributes. Sci World J 2014:951019

    Article  Google Scholar 

  • Ulfat M, Athar HU, Khan ZD, Kalaji HM (2020) RNAseq analysis reveals altered expression of key ion transporters causing differential uptake of selective ions in canola (Brassica napus L.) grown under NaCl stress. Plants 9(7):891–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vega SE, del Rio AH, Bamberg JB, Palta JP (2004) Evidence for the up-regulation of stearoyl-ACP (Δ9) desaturase gene expression during cold acclimation. Am J Potato Res 81(2):125–135

    Article  CAS  Google Scholar 

  • Wang HS, Yu C, Tang XF, Zhu ZJ, Ma NN, Meng QW (2014) A tomato endoplasmic reticulum (ER)-type omega-3 fatty acid desaturase (LeFAD3) functions in early seedling tolerance to salinity stress. Plant Cell Rep 33(1):131–142

    Article  CAS  PubMed  Google Scholar 

  • Zaman S, Hu S, Alam MA, Du H, Che S (2019) The accumulation of fatty acids in different organs of purslane under salt stress. Sci Hortic 250:236–242

    Article  CAS  Google Scholar 

  • Zhang J, Liu H, Sun J, Li B, Zhu Q, Chen S, Zhang H (2012) Arabidopsis fatty acid desaturase FAD2 is required for salt tolerance during seed germination and early seedling growth. PLoS ONE 7(1):e30355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zörb C, Geilfus CM, Mühling KH, Ludwig-Müller J (2013) The influence of salt stress on ABA and auxin concentrations in two maize cultivars differing in salt resistance. J Plant Physiol 170(2):220–224

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The present study was funded by the National Key Technology R&D Program under grant number 2015BAL02B01. We are thankful to Novo gene Co., China, which provided technical assistance in data analysis and RNA-sequencing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengquan Che.

Ethics declarations

Conflict of interest

There are no stated conflicts of interest by the authors.

Additional information

Communicated by M. Stobiecki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11738_2023_3535_MOESM1_ESM.xlsx

Figure S1–S6. The GO Directed Acyclic Graph graphical (DAG) output of enriched biological process (BP) (Figure S 1A), cellular component (CC) (Figure S 1B) and molecular function (MF) (Figure S 1C) in differential expression genes (DEGs) of LC_L1 vs LC_L0; BP (Figure S 2A) and MF (Figure S 2B) in DEGs of LC_L24 vs LC_L0; BP (Figure S 3A), CC (Figure S 3B) and MF (Figure S 3C) in DEGs of LC_L72 vs LC_L0; BP (Figure S 4A), CC (Figure S 4B) and MF (Figure S 4C) in DEGs of P_L1 vs P_L0; BP (Figure S 5A) and MF (Figure S 5B) in DEGs of P_L24 vs P_L0; BP (Figure S 6A), CC (Figure S 6B) and MF (Figure S 6C) in DEGs of P_L72 vs P_L0. Figure S7-S8. KEGG pathways enrichment analysis of down-regulated genes in LC_L1 vs LC_L0 (Figure S 7A), LC_L24 vs LC_L0 (Figure S 7B) and LC_L72 vs LC_L0 (Figure S 7C) of ‘LCL’, and P_L1 vs P_L0 (Figure 8A), P_L24 vs P_L0 (Figure 8B) and P_L72 vs P_L0 (Figure 8C) of ‘PL’. Figure S9-S10 KEGG pathways enrichment analysis of up-regulated genes LC_L1 vs LC_L0 (Figure S 9A), LC_L24 vs LC_L0 (Figure S 9B) and LC_L72 vs LC_L0 (Figure S 9C) of ‘LCL’, and P_L1 vs P_L0 (Figure 10A), P_L24 vs P_L0 (Figure 10B) and P_L72 vs P_L0 (Figure 10C) of ‘PL’ (XLSX 4867 kb)

Supplementary file2 (XLSX 1297 kb)

Supplementary file3 (XLSX 1980 kb)

Supplementary file4 (XLSX 22 kb)

Supplementary file5 (XLSX 13 kb)

Supplementary file6 (PPT 92 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, H., Zaman, S., Hu, S. et al. Transcriptome profiling of unigenes participating in salt tolerance in purslane (Portulaca oleracea) under salinity stress. Acta Physiol Plant 45, 76 (2023). https://doi.org/10.1007/s11738-023-03535-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-023-03535-6

Keywords

Navigation