Skip to main content
Log in

Salt-induced photoinhibition of PSII is alleviated in halophyte Thellungiella halophila by increases of unsaturated fatty acids in membrane lipids

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The effect of salinity on plant growth, chlorophyll content, photosynthetic parameters, photochemical efficiency of PSII, membrane lipid content and fatty-acid composition of halophyte Thellungiella halophila and glycophyte Arabidopsis thaliana was investigated to examine the possible role of unsaturated fatty acids in photosynthesis under saline conditions. The growth of Arabidopsis was significantly decreased by the 100 and 200 mM NaCl treatments; however, there was no significant difference in the fresh and dry weight of Thellungiella at different concentrations of NaCl. Exposure of Arabidopsis to salt resulted in a progressive decline in chlorophyll content, while there was no significant change in that of Thellungiella. The net photosynthetic rate, maximal photochemical efficiency of PSII (F v/F m) and actual PSII efficiency were significantly reduced in Arabidopsis but remained unaffected in Thellungiella. Arabidopsis under NaCl treatment showed decreased PG levels and decreased values for the unsaturated fatty acid content and the double bond index (DBI) of monogalactosyldiacylglycerols and phosphatidylglycerols; these values significantly increased in Thellungiella under NaCl treatment, as did the DBI values of digalactosyldiacylglycerols and sulphoquinovosyldiacylglycerols. These results suggest that Thellungiella under salt stress displays high resistance to photoinhibition and that increased concentrations of unsaturated fatty acids in membrane lipids enhances the tolerance of photosystem II to salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

16:0:

palmitic acid

16:1(3t):

∆3-trans-hexadecenoic

18:0:

Stearic acid

18:1:

Oleic acid

18:2:

Linoleic acid

18:3:

Linolenic acid

Chl:

Chlorophyll

DGDG:

Digalactosyldiacylglycerols

F o :

Initial fluorescence of the dark-adapted state

F v :

Variable fluorescence

F m :

Maximal fluorescence of the dark-adapted state

F s :

The steady-state fluorescence

F m′:

Maximal fluorescence in the light-adapted state

F v/F m :

Maximal photochemical efficiency of PSII

Ci:

Intercellular CO2 concentration

DBI:

Double bond index

Gs:

Stomatal conductance

MGDG:

Monogalactosyldiacylglycerols

PC:

Phosphatidylcholines

Pn:

Net photosynthetic rate

PG:

Phosphatidylglycerols

PPFD:

Photosynthetic photon flux density

ΦPSII:

The quantum yield of PSII electron transport

SQDG:

Sulphoquinovosyldiacylglycerols

References

  • Allakhverdiev SI, Kinoshita M, Inaba M, Suzuki I, Murata N (2001) Unsaturated fatty acids in membrane lipids protect the photosynthetic machinery against salt-induced damage in synechococcus. Plant Physiol 125:1842–1853

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Amtmann A, Bohnert HJ, Bressan RA (2005) Abiotic stress and plant genome evolution. Search for new models. Plant Physiol 138:127–130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Aro E, Virgin I, Andersson B (1993) Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochimica et Biophysica Acta (BBA) Bioenergetics 1143:113–134

    Article  CAS  Google Scholar 

  • Baker NR (1991) A possible role for photosystem II in environmental perturbations of photosynthesis. Physiol Plant 81:563–570

    Article  CAS  Google Scholar 

  • Ben Hamed K, Ben Youssef N, Ranieri A, Zarrouk M, Abdelly C (2005) Changes in content and fatty acid profiles of total lipids and sulfolipids in the halophyte Crithmum maritimum under salt stress. J Plant Physiol 162:599–602

    Article  CAS  PubMed  Google Scholar 

  • Berberich T, Harada M, Sugawara K, Kodama H, Iba K, Kusano T (1998) Two maize genes encoding ω-3 fatty acid desaturase and their differential expression to temperature. Plant Mol Biol 36:297–306

    Article  CAS  PubMed  Google Scholar 

  • Block MA, Dorne A, Joyard J, Douce R (1983) Preparation and characterization of membrane fractions enriched in outer and inner envelope membranes from spinach chloroplasts. II. Biochemical characterization. J Biol Chem 258:13281–13286

    CAS  PubMed  Google Scholar 

  • Chen ZQ, Xu CH, Chen MJ, Xu L, Wang KF, Lin SQ, Kuang TY (1994) Effect of chilling acclimation on thylakoid membrane protein of wheat. Acta Bot Sin 36:423–429

    CAS  Google Scholar 

  • Cooke DT, Burden RS (1990) Lipid modulation of plasma membrane-bound ATPases. Physiol Plant 78:153–159

    Article  CAS  Google Scholar 

  • Dakhma WS, Zarrouk M, Cherif A (1995) Effects of drought-stress on lipids in rape leaves. Phytochemistry 40:1383–1386

    Article  CAS  Google Scholar 

  • Deuticke B, Haest C (1987) Lipid modulation of transport proteins in vertebrate cell membranes. Annu Rev Physiol 49:221–235

    Article  CAS  PubMed  Google Scholar 

  • Domonkos I, Laczkó-Dobos H, Gombos Z (2008) Lipid-assisted protein–protein interactions that support photosynthetic and other cellular activities. Prog Lipid Res 47:422–435

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  CAS  PubMed  Google Scholar 

  • Gigon A, Matos A, Laffray D, Zuily-Fodil Y, Pham-Thi A (2004) Effect of drought stress on lipid metabolism in the leaves of Arabidopsis thaliana (ecotype Columbia). Ann Bot 94:345–351

    Article  CAS  PubMed  Google Scholar 

  • Hagio M, Sakurai I, Sato S, Kato T, Tabata S, Wada H (2002) Phosphatidylglycerol is essential for the development of thylakoid membranes in Arabidopsis thaliana. Plant Cell Physiol 43:1456–1464

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu J, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Biol 51:463–499

    Article  CAS  Google Scholar 

  • Inan G, Zhang Q et al (2004) Salt cress. A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiol 135:1718–1737

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kooten O, Snel JF (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res 25:147–150

    Article  PubMed  Google Scholar 

  • Li HS, Sun Q, Zhao SJ (2000) Principles and techniques of plant physiological biochemical experiment. Higher Education, Beijing, pp 195–197

    Google Scholar 

  • Liu X, Li B, Yang J, Sui N, Yang X, Meng Q (2008) Overexpression of tomato chloroplast omega-3 fatty acid desaturase gene alleviates the photoinhibition of photosystems 2 and 1 under chilling stress. Photosynthetica 46:185–192

    Article  CAS  Google Scholar 

  • Matos MC, Campos PS, Ramalho JC, Medeira MC, Maia MI, Semedo JM, Marques NM, Matos A (2002) Photosynthetic activity and cellular integrity of the Andean legume Pachyrhizus ahipa (Wedd.) Parodi under heat and water stress. Photosynthetica 40:493–501

    Article  CAS  Google Scholar 

  • Mikami K, Murata N (2003) Membrane fluidity and the perception of environmental signals in cyanobacteria and plants. Prog Lipid Res 42:527–543

    Article  CAS  PubMed  Google Scholar 

  • Minoda A, Sonoike K, Okada K, Sato N, Tsuzuki M (2003) Decrease in the efficiency of the electron donation to tyrosine Z of photosystem II in an SQDG-deficient mutant of Chlamydomonas. FEBS Lett 553:109–112

    Article  CAS  PubMed  Google Scholar 

  • Mittova V, Guy M, Tal M, Volokita M (2004) Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. J Exp Bot 55:1105–1113

    Article  CAS  PubMed  Google Scholar 

  • Müller M, Santarius KA (1978) Changes in chloroplast membrane lipids during adaptation of barley to extreme salinity. Plant Physiol 62:326–329

    Article  PubMed Central  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Olsson M (1995) Alterations in lipid composition, lipid peroxidation and anti-oxidative protection during senescence in drought stressed plants and non-drought stressed plants of Pisum sativum. Plant Physiol Biochem 33:547–553

    CAS  Google Scholar 

  • Pick U, Gounaris K, Weiss M, Barber J (1985) Tightly bound sulpholipids in chloroplast CF0-CF1. Biochimica et Biophysica Acta (BBA)-Bioenergetics 808:415–420

    Article  CAS  Google Scholar 

  • Ramani B, Zorn H, Papenbrock J (2004) Quantification and fatty acid profiles of sulfolipids in two halophytes and a glycophyte grown under different salt concentrations. Z Natu 59:835–842

    CAS  Google Scholar 

  • Schuler I, Milon A, Nakatani Y, Ourisson G, Albrecht A, Benveniste P, Hartman M (1991) Differential effects of plant sterols on water permeability and on acyl chain ordering of soybean phosphatidylcholine bilayers. Proc Natl Acad Sci 88:6926–6930

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Siegenthaler PA, Eichenberger W (1984) Structure, function, and metabolism of plant lipids. In: Proceedings of the 6th International Symposium on the Structure, Function, and Metabolism of Plant Lipids, Held in Neuchâtel, Switzerland, July 16-20, 1984. (Elsevier Science Publishers)

  • Stepien P, Johnson GN (2009) Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte Thellungiella: role of the plastid terminal oxidase as an alternative electron sink. Plant Physiol 149:1154–1165

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stępień P, Kłbus G (2006) Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress. Biol Plant 50:610–616

    Article  Google Scholar 

  • Stepien P, Klobus G (2005) Antioxidant defense in the leaves of C3 and C4 plants under salinity stress. Physiol Plant 125:31–40

    Article  CAS  Google Scholar 

  • Sui N, Li M, Shu DF, Zhao SJ, Meng QW (2007a) Antisense-mediated depletion of tomato chloroplast glycerol-3-phosphate acyltransferase affects male fertility and increases thermal tolerance. Physiol Plant 130:301–314

    Article  CAS  Google Scholar 

  • Sui N, Li M, Zhao S, Li F, Liang H, Meng Q (2007b) Overexpression of glycerol-3-phosphate acyltransferase gene improves chilling tolerance in tomato. Planta 226:1097–1108

    Article  CAS  PubMed  Google Scholar 

  • Upchurch RG (2008) Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol Lett 30:967–977

    Article  CAS  PubMed  Google Scholar 

  • Volkov V, Wang B, Dominy PJ, Fricke W, Amtmann A (2004) Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana, possesses effective mechanisms to discriminate between potassium and sodium. Plant, Cell Environ 27:1–14

    Article  CAS  Google Scholar 

  • Xu Y, Siegenthaler P (1997) Low temperature treatments induce an increase in the relative content of both linolenic and λ3-hexadecenoic acids in thylakoid membrane phosphatidylglycerol of squash cotyledons. Plant Cell Physiol 38:611–618

    Article  CAS  Google Scholar 

  • Zhang M, Barg R, Yin M, Gueta Dahan Y, Leikin Frenkel A, Salts Y, Shabtai S, Ben Hayyim G (2005) Modulated fatty acid desaturation via overexpression of two distinct ω-3 desaturases differentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants. Plant J 44:361–371

    Article  CAS  PubMed  Google Scholar 

  • Zhu J (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful for financial support from the NSFC (National Natural Science Research Foundation of China, Project No. 31300205), Natural Science Research Foundation of Shandong (ZR2013CQ009) and the Program for Scientific research innovation team in Colleges and universities of Shandong Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Sui.

Additional information

Communicated by Z. Gombos.

N. Sui and G. Han have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sui, N., Han, G. Salt-induced photoinhibition of PSII is alleviated in halophyte Thellungiella halophila by increases of unsaturated fatty acids in membrane lipids. Acta Physiol Plant 36, 983–992 (2014). https://doi.org/10.1007/s11738-013-1477-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-013-1477-5

Keywords

Navigation