Skip to main content
Log in

Evidence for the up-regulation of stearoyl-ACP (Δ9) desaturase gene expression during cold acclimation

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Our previous studies demonstrated that an increase in 18:2 (linoleate) in the purified plasma membrane fraction during cold acclimation is associated with genetic variations in cold acclimation capacity. This increase was found only in genotypes that are able to cold acclimate and was reversible on deacclimation suggesting a link between the accumulation of 18:2 and acquisition of freezing tolerance. The present study was aimed at understanding the association between the induction of stearoyl-ACP (acyl carrier protein) (Δ9) desaturase and the ability to cold acclimate. Our approach was to study the induction of Δ9 desaturase at the transcript level using potato Δ9 desaturase gene-specific primers and reverse transcription polymerase chain reaction (RT-PCR). For this purpose, total RNA fromSolanum tuberosum (cold sensitive, unable to acclimate) andSolanum commersonii (cold tolerant, able to cold acclimate) was extracted before and after cold acclimation. RT-PCR produced a single band and sequence analysis confirmed that the amplified band was Δ9 desaturase. While the cold acclimating species,Solanum commersonii, exhibited an increase in Δ9 desaturase transcript levels after cold acclimation, the cold non-acclimating species,Solanum tuberosum, exhibited no change. Our results show that the increase in Δ9 desaturase gene transcripts during cold acclimation is associated with the cold acclimation response in potato.

Resumen

Estudios realizados en nuestro laboratorio han demostrado que durante la acclimatación a bajas temperaturas existe un incremento del ácido linoleico (18:2) en la membrana plasmática. Dicho incremento está asociado con la variación genética observada en la capacidad de aclimatación en papa. Este incremento fue encontrado únicamente en los genotipos capaces de aclimatarse y fue reversible durante la deaclimatacion sugiriendo que existe una relacion entre acumulación de 18:2 y adquisición de resistencia a bajas temperaturas. El presente trabajo tuvo como objetivo estudiar la asociación entre la inducción de la desaturasa stearoyl-ACP (proteina portadora de acyl) (Δ9) y la habilidad de aclimatarse a bajas temperaturas. Para ello se estudió la inducción de la desaturasa Δ9 a nivel the transcripción utilizando primers especificos para el gen de desaturasa de papa mediante reacción de polimerasa en cadena de transcripción reversa (RT-PCR). Se extrajo el ARN total deSolanum tuberosum (sensible a heladas, incapaz de aclimatarse a bajas temperaturas) ySolanum commersonii (resistente a heladas, capaz de aclimatarse a bajas temperaturas) antes y después del proceso de aclimatación. RT-PCR produjo una sohl banda y el análisis de la secuencia confirmó que la banda amplificada era desaturasa Δ9. Mientras que la especie capaz de aclimatarse,Solanum commersonii, exhibió un incremento en los niveles de transcripción de la desaturasa Δ9 después de la aclimatación, la especie incapaz de aclimatarse,Solanum tuberosum, no exhibió ningún cambio. Nuestros resultados demuestran que el incremento en la transcripción del gen de desaturasa Δ9 durante la aclimatación a bajas temperaturas está asociado con la capacidad de aclimatación a bajas temperaturas en papa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACCRFT:

acclimated relative freezing tolerance

ACP:

acyl carrier protein

bp:

base pair

CAC:

cold acclimation capacity

NARFT:

non-acclimated relative freezing tolerance

PAR:

photosynthetically active radiation

RFT:

relative freezing tolerance

RT-PCR:

reverse transcription polymerase chain reaction

Literature Cited

  • Abdallah AY, and JP Palta. 1989. Seasonal changes in membrane polar lipid fatty acid composition coincide with initiation of fruit ripening and changes in freezing stress resistance of leaves of cranberry (abstract no. 595). Plant Physiol 87: 100.

    Google Scholar 

  • Alonso A, CS Queiroz, and AC Megalhaes. 1997. Chilling stress leads to increased cell-membrane rigidity in roots of coffee (Coffea arabica L.) seedlings. Biochimica et Biophysica Acta-Biomembranes 1323: 75–84.

    Article  CAS  Google Scholar 

  • Båga M, RN Chibbar, and KK Kartha. 1995. Molecular cloning and expression analysis of peroxidase genes from wheat. Plant Mol Biol 29: 647–662.

    Article  PubMed  Google Scholar 

  • Bertin P, P Bullens, J Bouharmont, and JM Kinet. 1998. Somaclonal variation and chilling tolerance improvement in rice; changes in fatty acid composition. Plant Growth Regul 24: 31–41.

    Article  CAS  Google Scholar 

  • Browse J, and C. Somerville. 1991. Glycerolipid metabolism, biochemistry and regulation. Annu Rev Plant Physiol Plant Mol Biol 42: 467–506.

    Article  CAS  Google Scholar 

  • Cossins AR 1994. Homeoviscous adaptation of biological membranes and its functional significance.In: AR Cossins (ed), Temperature Adaptation of Biological Membranes. Portland Press, London, pp 63–76.

    Google Scholar 

  • Flint HL, BR Boyse, and DJ Beattie. 1967. Index of injury—a useful expression of freezing injury to plant tissues as determined by the electrolytic method. Can J Plant Sci 47: 229–230.

    Article  Google Scholar 

  • Gibson S, V Arondel, K Iba, and C Somerville. 1994. Cloning of a temperature regulated gene encoding a chloroplast ω-3 desaturase fromArabidopsis thaliana. Plant Physiol 106: 1615–1621.

    Article  PubMed  CAS  Google Scholar 

  • He M, E Liu, and K Conway. 1995. Semi-quantitative reverse transcriptase-polymerase chain reaction for the detection of low abundance transcripts in human cells.In: JW Larrick and PD Siebert (eds), Reverse Transcriptase PCR. Ellis Harwood, London, pp 289–299.

    Google Scholar 

  • Hedley PE, GC Machray, HV Davies, L Burch, and R Waugh. 1993. cDNA cloning and expression of a potato (Solanum tuberosum) invertase. Plant Mol Biol 22: 917–922.

    Article  PubMed  CAS  Google Scholar 

  • Heinz, E 1993. Biosynthesis of polyunsaturated fatty acids.In: TS Moore Jr (ed), Lipid Metabolism in Plants. CRC Press, Boca Raton, pp 33–90.

    Google Scholar 

  • Hughes MA, and MA Dunn. 1996. The molecular biology of plant acclimation to low temperature. J Exp Bot 47: 291–305.

    Article  CAS  Google Scholar 

  • Hugly S, and C Somerville. 1992. A role of membrane lipid polyunsaturation in chloroplast biogenesis at low temperature. Plant Physiol 99: 197–202.

    PubMed  CAS  Google Scholar 

  • Ishizaki-Nishizawa O, T Fujii, M Azuma, K Sekiguchi, N Murata, T Ohtani, and T Toguri. 1996. Low-temperature resistance of higher plants is significantly enhanced by a non-specific cyanobacterial desaturase. Nature Biotechnol 14: 1003–1006.

    Article  CAS  Google Scholar 

  • Iswari S, and JP Palta. 1989. Plasma membrane ATPase following reversible and irreversible freezing injury. Plant Physiol 90: 1088–1095.

    PubMed  CAS  Google Scholar 

  • Kates M, E. Pugh, and G Ferrante. 1984. Regulation of membrane fluidity by lipid desaturases. Biomembranes 12: 379–395.

    CAS  Google Scholar 

  • Kaur N, JP Palta, D Greene, RL Wykle, BA Workmaster, and B Karlsson. 1996. Plasma membrane phospholipid molecular species associated with genetic variations in cold acclimation ability in frost sensitive and tolerantSolanum species and their somatic hybrids (abstract no. 580). Plant Physiol 111: 133.

    Google Scholar 

  • Knutzon DS, GA Thompson, SE Radke, WB Johnson, VC Knauf, and JC Kridl. 1992. Modification of aBrassica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene. Proc Natl Acad Sci USA 89: 2624–2628.

    Article  PubMed  CAS  Google Scholar 

  • Kodama H, T Hamada, G Horiguchi, M Nishimura, and K Iba. 1994. Genetic enhancement of cold tolerance by expression of a gene for chloroplast ω-fatty acid desaturase in transgenic tobacco. Plant Physiol 105: 601–605.

    PubMed  CAS  Google Scholar 

  • Larrick JW, and PD Siebert. 1995. Reverse Transcriptase PCR. Ellis Harwood, London.

    Google Scholar 

  • Lazarus CM, and H MacDonald. 1996. Characterization of a strawberry gene for auxin-binding protein, and its expression in insect cells. Plant Mol Biol 31: 267–277.

    Article  PubMed  CAS  Google Scholar 

  • Lee LG, SL Spurgeon, CR Heiner, SC Benson, BB Rosenblum, SM Menchen, RJ Graham, A Constantinescu, KG Upadhya, and JM Cassel. 1997. New energy transfer dyes for DNA sequencing. Nucleic Acids Res 25: 2816–2822.

    Article  PubMed  CAS  Google Scholar 

  • Los DA, I Horvath, L Vigh, and N Murata 1993. The temperaturedependent expression of the desaturase genedesA inSynechocystis PCC 6803. FEBS Lett 378: 57–60.

    Article  Google Scholar 

  • Lynch DV, and PL Steponkus. 1987. Plasma membrane lipid alterations associated with cold acclimation of winter rye seedlings (Secale cereale L. cv. Puma). Plant Physiol 83: 761–767.

    PubMed  CAS  Google Scholar 

  • Lynch DV, and PL Steponkus. 1989. Lyotropic phase behavior of unsaturated phosphatidylcholine species: relevance to the mechanism of plasma membrane destabilization and freezing injury. Biochem Biophys Acta 984: 267–272.

    Article  CAS  Google Scholar 

  • Macartney A, B Maresca, and AR Cossins. 1994. Acyl-CoA desaturases and the adaptive regulation of membrane lipid composition.In: AR Cossins (ed), Temperature Adaptation of Biological Membranes. Portland Press, London. pp 129–139.

    Google Scholar 

  • McKeon TA, and PK Stumpf. 1982. Purification and characterization of the stearoyl-acyl carrier protein desaturase and the acyl-acyl carrier protein thioesterase from maturing seeds of safflower. J Biochem Chem 257: 12141–12147.

    CAS  Google Scholar 

  • Moon BY, SI Higashi, Z Gombos, and N Murata 1995. Unsaturation of the membrane lipids of chloroplasts stabilizes the photosynthetic machinery against low-temperature photoinhibition in transgenic tobacco plants. Proc Natl Acad Sci USA 92: 6219–6223.

    Article  PubMed  CAS  Google Scholar 

  • Murata N. 1983. Molecular species composition of phosphtidyl glycerols form chilling sensitive and chilling resistant plants. Plant Cell Physiol 24: 81–86.

    CAS  Google Scholar 

  • Murata N, O Ishizaki-Nishizawa, S Higashi, H Hayashi, Y Tasaka, and I Nishida. 1992. Genetically engineered alteration in the chilling sensitivity of plants. Nature 356: 710–713.

    Article  CAS  Google Scholar 

  • Murata N, and DA Los. 1997. Membrane fluidity and temperature perception. Plant Physiol 115: 875–879

    PubMed  CAS  Google Scholar 

  • Murata N, and I Nishida 1987. Lipids of blue-green algae (cyanobacteria).In: PK Stumpf (ed), The Biochemistry of Plants. Academic Press, San Diego. pp 315–347.

    Google Scholar 

  • Murata N, and H Wada 1995. Acyl-lipid desaturases and their importance in the tolerance and acclimatization to cold of cyanobacteria. Biochem J 308: 1–8.

    PubMed  CAS  Google Scholar 

  • Nishida I, and N Murata. 1996. Chilling sensitivity in plants and cyanobacteria The crucial contribution of membrane lipids. Annu Rev Plant Physiol Plant Mol Biol 47: 541–568.

    Article  PubMed  CAS  Google Scholar 

  • Nishida I, T Beppu, T Matsuo, and N Murata 1992. Nucleotide sequence of a cDNA clone encoding a precursor to stearoyl-(acyl-carrierprotein) desaturase from spinach,Spinacia oleracea. Plant Mol Biol 19: 711–713.

    Article  PubMed  CAS  Google Scholar 

  • Ohlrogge J, and J Browse. 1995. Lipid biosynthesis. Plant Cell 7: 957–970.

    Article  PubMed  CAS  Google Scholar 

  • Palta JP. 1989. Plasma membrane ATPase as a site of perturbation in response to freeze-thaw stress. Curr. Top. Plant Biochem Physiol 8: 41–68.

    CAS  Google Scholar 

  • Palta JP, and LS Meade. 1989. During cold acclimation of potato species, and increase in 18:2 and a decrease in 16:0 in plasma membrane phospholipid coincides with an increase in freezing stress resistance (abstract no. 530). Plant Physiol 89: 89.

    Google Scholar 

  • Palta JP, and PH Li. 1980. Alterations in membrane transport properties by freezing injury in herbaceous plants: evidence against the rupture theory. Physiol Plant 50: 169–175.

    Article  CAS  Google Scholar 

  • Palta JP, Whitaker BA, and LS Weiss. 1993. Plasma membrane lipids associated with genetic variability in freezing tolerance and cold acclimation ofSolanum species. Plant Physiol 103: 793–803.

    PubMed  CAS  Google Scholar 

  • Prasad TK 2001. Mechanisms of chilling injury and tolerance.In: AS Basra (ed), Crop Responses and Adaptations to Temperature Stress. Food Products Press, New York. pp 1–52.

    Google Scholar 

  • Puissant C, and L-M Houdebine. 1990. An improvement of the single step method of RNA isolation by acid guanidinium thiocyanatephenol-chloroform extraction. BioTechniques 8: 148–149.

    PubMed  CAS  Google Scholar 

  • Riken A, JW Dill, and DK Bergman. 1993. Correlation between the circadian rhythm of resistance to extreme temperatures and changes in fatty acid composition in cotton seedlings. Plant Physiol 101: 31–36.

    Google Scholar 

  • Roughan PG. 1985. Phosphatidylglycerol and chilling sensitivity in plants. Plant Physiol 77: 740–746.

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto T, and DA Bryant. 1997. Temperature-regulated mRNA accumulation and stabilization for fatty acid desaturase genes in cyanobacteriumSynechococcus sp. strain PCC 7002. Mol Microbiol 23: 1281–1292.

    Article  PubMed  CAS  Google Scholar 

  • Samala S, J Yan, and WV Baird. 1998. Changes in polar lipid fatty acid composition during cold acclimation in ‘Midiron’ and ‘U3’ bermudagrass. Crop Sci 38: 188–195.

    Article  CAS  Google Scholar 

  • Sato A, CK Becker, and VC Knauf. 1992. Nucleotide sequence of a complementary DNA clone encoding stearoyl-acyl carrier protein desaturase fromSimmondsia chinensis. Plant Physiol 99: 362–363.

    PubMed  CAS  Google Scholar 

  • Shanklin J, and C Somerville. 1991. Stearoyl-acyl-carrier-protein desaturase from higher plants is structurally unrelated to the animal and fungal homologs. Proc Natl Acad Sci 88: 2510–2514.

    Article  PubMed  CAS  Google Scholar 

  • Shewfelt RL 1992. Response of plant membranes to chilling and freezing.In: YY Leshem (ed), Plant Membranes. Dordrecht:Kluwer. pp 192–219.

    Google Scholar 

  • Slocombe SP, I Cummins RP Jarvis, and DJ Murphy. 1992. Nucleotide sequence and temporal regulation of a seed-specificBrassica napus cDNA encoding a stearoyl-acyl carrier protein (ACP) desaturase. Plant Mol Biol 20: 151–155.

    Article  PubMed  CAS  Google Scholar 

  • Slocombe SP, P Piffanelli, D Fairbairn, S Bowra, P Hatzopoulos, M Tsiantis, and DJ Murphy. 1994. Temporal and tissue specific regulation of aBrassica napus stearoyl-acyl carrier protein gene. Plant Physiol 104: 1167–1176.

    Article  PubMed  CAS  Google Scholar 

  • Steffen KL, R Arora, and JP Palta 1989. Relative sensitivity of photosynthesis and respiration to a freeze-thaw stress: role of realistic freeze-thaw protocol. Plant Physiol 89: 1372–1379.

    Article  PubMed  CAS  Google Scholar 

  • Steponkus PL 1984. Role of plasma membrane in freezing injury and cold acclimation. Annu Rev Plant Physiol 35: 543–584.

    Article  CAS  Google Scholar 

  • Steponkus PL, M Uemura, and MS Webb. 1993. A contrast of the cryostability of the plasma membrane of winter rye and spring oat. Two species that widely differ in their freezing tolerance and plasma membrane lipid composition.In: PL Steponkus (ed), Advances in Low-Temperature Biology, Vol 2. JAI Press, London. pp 211–312.

    Google Scholar 

  • Steponkus PL, and MS Webb. 1992. Freeze induced dehydration and membrane stabilization in plants.In: G Somero and B Osmond (eds), Water and Life: Comparative Analysis of Water Relationships at the Organismic, Cellular and Molecular Level. SpringerVerlag, Berlin, pp 338–362.

    Google Scholar 

  • Stone JM, JP Palta, JB Bamberg, LS Weiss and JF Harbage. 1993. Inheritance of freezing resistance in tuber-bearingSolanum species: Evidence for independent genetic control of nonacclimated freezing tolerance and cold acclimation capacity. Proc Natl Acad Sci 90: 7869–7873.

    Article  PubMed  CAS  Google Scholar 

  • Sutinen ML, Palta JP, and PB Reich. 1992. Seasonal differences in freezing stress resistance of needles ofPinus nigra andPinus resinosa: evaluation of the electrolyte leakage method. Tree Physiol 11: 241–254.

    PubMed  Google Scholar 

  • Sutinen ML, SJ Rybarczyk, and JP Palta. 1989. Seasonal changes in polar fatty acid composition coincide with changes in freezing stress resistance in pine needles.In: DD Randall and DG Blevins (eds), Current Topics in Plant Biochemistry and Physiology. University of Missouri, Columbia. pp 8:286.

    Google Scholar 

  • Suzuki I, DA Los, and N Murata. 2000. Perception and transduction of low-temperature signals to induce desaturation of fatty acids. Biochem Soc Transactions 28: 628–630.

    Article  CAS  Google Scholar 

  • Tasaka Y, Z Gombos, Y Nishiyama, P Mohanty, T Ohba, K Ohki, and N Murata. 1996. Targeted mutagenesis of acyl-lipid desaturases inSynechosystis: evidence of the important roles of polyunsaturated membrane lipids in growth, respiration and photosynthesis. EMBO J 15: 6416–6425.

    PubMed  CAS  Google Scholar 

  • Taylor, MA, SB Smith, HV Davies, and LR Burch. 1992. The primary structures of the precursor of a cDNA clone of the stearoyl-acyl carrier protein desaturase gene from potato (Solanum, tuberosum L.) Plant Physiol 100: 533–534.

    PubMed  CAS  Google Scholar 

  • Thompson GA, DE Scherer, S Foxall-Van Aken, JW Kenny, HL Young, DK Shintani, JC Kridl, and VC Knauf. 1991. Primary structures of the precursor and mature forms of stearoyl-acyl carrier protein desaturase from safflower embryos and requirement of ferredoxin for enzyme activity. Proc Natl Acad Sci 88: 2578–2582.

    Article  PubMed  CAS  Google Scholar 

  • Uemura M, RA Joseph, and PL Steponkus. 1995. Cold acclimation ofArabidopsis thaliania. Effect on plasma membrane lipid composition and freeze-induced lesions. Plant Physiol 109: 15–30.

    PubMed  CAS  Google Scholar 

  • Uemura M, and S Yoshida. 1984. Involvement of plasma membrane alterations in cold acclimation of winter rye seedlings (Secale cereale L. cv. Puma). Plant Physiol 75: 818–826.

    PubMed  CAS  Google Scholar 

  • Vandenbussche B, S Leuridan, V Verdoodt, M Gysemberg, M De Proft. 1999. Changes in sugar content and fatty acid composition ofin vitro sugar beet shoots after cold acclimation: influence on survival after cryopreservation. Plant Growth Regul 28: 157–163.

    Article  CAS  Google Scholar 

  • Vega SE, JP Palta, and JB Bamberg. 2000. Variability in the speed of cold acclimation and deacclimation among tuber-bearingSolanum (potato) species. J Amer Soc Hort Sci 125: 205–211.

    Google Scholar 

  • Wada H, Z Gombos, and N Murata. 1990. Enhancement of chilling tolerance of a cyanobacterium by genetic manipulation of fatty acid desaturation. Nature 347: 200–203.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiwan P. Palta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vega, S.E., del Rio, A.H., Bamberg, J.B. et al. Evidence for the up-regulation of stearoyl-ACP (Δ9) desaturase gene expression during cold acclimation. Am. J. Pot Res 81, 125–135 (2004). https://doi.org/10.1007/BF02853610

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02853610

Additional Key Words

Navigation