Skip to main content
Log in

Application of gliadin polymorphism for pedigree analysis in common wheat (Triticum aestivum L.) from Northern Kazakhstan

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Gliadins, seed storage proteins, are popular markers effectively employed for the analysis of common wheat. Gliadin electrophoretic patterns are genotype-specific, reproducible, not dependent on growing conditions and are suitable for germplasm identification complementary to molecular markers. Gliadins have been identified and used in wheat from various countries, but prior to this study little was known about gliadin polymorphism in wheat from Kazakhstan. In this study, 48 alleles of six gliadin-coding loci were identified in 43 cultivars of spring wheat from Northern Kazakhstan. The alleles Gli-A1 f , Gli-B1 e , Gli-D1 a , Gli-A2 p , Gli-B2 d and Gli-D2 e had maximal frequencies in each of the six loci. Identified Gli alleles in the loci formed ‘Gliadin Genetic Formula’ unique for each studied variety, and these were compared to the published data from previously analyzed wheat varieties. Pedigree analysis of 43 varieties studied for gliadin polymorphisms indicated that some Gli alleles were conserved and inherited from the progenitor cultivar Akmolinka 1. In contrast, other Gli alleles were replaced by those from modern germplasms. It is assumed that a higher frequency of gliadin alleles can be associated with the selection of genotypes with improved traits for yield and seed quality in the studied wheat cultivars from Northern Kazakhstan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Absattarova AS (2002) Identification of Kazakhstan agroecotypes winter common wheat cultivars using of gliadin components blocks. Dissertation, Kazakh Scientific-Research Institute of Agriculture and Plant growing, Almalybak, p 76 (in Russ.)

  • Altenbach SB, Tanaka CK, Pineau F, Lupi R, Drouet M, Beaudouin E, Morisset M, Denery-Papini S (2015) Assessment of the allergenic potential of transgenic wheat (Triticum aestivum) with reduced levels of ω5-gliadins, the major sensitizing allergen in wheat-dependent exercise-induced anaphylaxis. J Agric Food Chem 63(42):9323–9332. doi:10.1021/acs.jafc.5b03557

    Article  CAS  PubMed  Google Scholar 

  • Barak S, Mudgil D, Khatkar BS (2015) Biochemical and functional properties of wheat gliadins: a review. Crit Rev Food Sci Nutr 55(3):357–368. doi:10.1080/10408398.2012.654863

    Article  CAS  PubMed  Google Scholar 

  • Bonnin I, Bonneuil C, Goffaux R, Montalent P, Goldringer I (2014) Explaining the decrease in the genetic diversity of wheat in France over the 20th century. Agric Ecosyst Environ 195:183–192. doi:10.1016/j.agee.2014.06.003

    Article  Google Scholar 

  • Büren M (2001) Polymorphisms in two homeologous γ-gliadin genes and the evolution of cultivated wheat. Genet Resour Crop Evol 48(2):205–220. doi:10.1023/A:1011213228222

    Article  Google Scholar 

  • Bushuk W, Zillman RR (1978) Wheat cultivar identification by gliadin electrophoregrams. I. Apparatus, method and nomenclature. Can J Plant Sci 58(2):505–515. doi:10.4141/cjps78-076

    Article  Google Scholar 

  • Chernakov VM, Metakovsky EV (1994) Allelic variation at the gliadin-coding loci and evaluation of genetic similarity of common wheat cultivars bred in different breeding centers. Russ J Genet 30:509–517 (in Russ.)

    Google Scholar 

  • Dachkevitch T, Redaelli R, Biancardi AM, Metakovsky EV, Pogna NE (1993) Genetics of gliadins coded by the group 1 chromosomes in the high-quality bread wheat cultivar Neepawa. Theor Appl Genet 86(2–3):389–399. doi:10.1007/BF00222107

    CAS  PubMed  Google Scholar 

  • Dobrotvorskaya TM, Dragovich AY, Martynov SP, Pukhal’skii VA (2009) Genealogical and statistical analyses of the inheritance of gliadin-coding alleles in a model set of common wheat Triticum aestivum L. cultivars. Russ J Genet 45(6):685–695. doi:10.1134/S1022795409060088

    Article  CAS  Google Scholar 

  • Flæte NES, Uhlen AK (2003) Association between allelic variation at the combined Gli-1, Glu-3 loci and protein quality in common wheat (Triticum aestivum L.). J Cereal Sci 37(2):129–137. doi:10.1006/jcrs.2001.0447

    Article  Google Scholar 

  • Fu YB (2015) Understanding crop genetic diversity under modern plant breeding. Theor Appl Genet 128(11):2131–2142. doi:10.1007/s00122-015-2585-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Gil-Humanes J, Pistón F, Giménez MJ, Martín A, Barro F (2012) The introgression of RNAi silencing of γ-gliadins into commercial lines of bread wheat changes the mixing and technological properties of the dough. PLoS One 7(9):e45937. doi:10.1371/journal.pone.0045937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • International Seed Testing Association (1996) International rules for seed testing verification of species and cultivars. Seed Sci Technol 24:253–270

    Google Scholar 

  • ISO 8981 (1993) Wheat—identification of varieties by electrophoresis. http://www.iso.org/iso/catalogue_detail.htm?csnumber=16506. Accessed 27 July 2016

  • Kaskarbayev ZA, Babkenov AT, et al. (2011) Cultivars of cereals bred in research and production centre of grain farming named after A.I. Barayev. Astana, pp 4–15 (in Russ.)

  • Khan K, Hamada AS, Patek J (1985) Polyacrylamide gel electrophoresis for wheat variety identification: effect of variables on gel properties. Cereal Chem 62(5):310–313

    Google Scholar 

  • Kudryavtsev AM, Dedova LV, Melnik VA, Shishkina AA, Upelniek VP, Novoselskaya-Dragovich AY (2014) Genetic diversity of modern Russian durum wheat cultivars at the gliadin-coding loci. Russ J Genet 50(5):483–488. doi:10.1134/S1022795414050093

    Article  CAS  Google Scholar 

  • Lafiandra D, Kasarda DD, Morris R (1984) Chromosomal assignment of genes coding for the wheat gliadin protein components of the cultivars ‘Cheyenne’ and ‘Chinese Spring’ by two-dimensional (two-pH) electrophoresis. Theor Appl Genet 68(6):531–539. doi:10.1007/BF00285007

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Song Y, Zhou R, Branlard G, Jia J (2009) Detection of QTLs for bread-making quality in wheat using a recombinant inbred line population. Plant Breed 128(3):235–243. doi:10.1111/j.1439-0523.2008.01578.x

    Article  Google Scholar 

  • Li J, An B, Zhang X (2012) Identification and promoter analysis of some important storage protein genes from wheat (Triticum aestivum L.). Plant Omics J 5(4):326–332

    CAS  Google Scholar 

  • Li J, Wang SL, Cao M, Lv DW, Subburaj S, Li XH, Zeller FJ, Hsam SLK, Yan YM (2013) Cloning, expression, and evolutionary analysis of α-gliadin genes from Triticum and Aegilops genomes. J Appl Genet 54(2):157–167. doi:10.1007/s13353-013-0139-z

    Article  CAS  PubMed  Google Scholar 

  • McIntosh RA, Yamazaki Y, Dubkovsky J, Rogers J, Morris C, Appels R, Xia XC (2013) Catalogue of gene symbols for wheat. In: 12th International Wheat Genetics Symposium, Yokohama, Japan. p. 1–31. http://www.maswheat.ucdavis.edu/CGSW/CatalogueIntroduction2013.pdf. Accessed 08 Sept 2013

  • Medouri A, Bellil I, Khelifi D (2015) The genetic diversity of gliadins in Aegilops geniculata from Algeria. Czech J Genet Plant Breed 51(1):9–15. doi:10.17221/158/2014-CJGPB

    Article  CAS  Google Scholar 

  • Melnikova NV, Kudryavtsev AM (2009) Allelic diversity at gliadin-coding gene loci in cultivars of spring durum wheat (Triticum durum Desf.) bred in Russia and former Soviet republics in the 20th century. Russ J Genet 45(10):1208–1214. doi:10.1134/S1022795409100081

    Article  CAS  Google Scholar 

  • Melnikova NV, Ganeva GD, Popova ZG, Landjeva SP, Kudryavtsev AM (2010a) Gliadins of Bulgarian durum wheat (Triticum durum Desf.) landraces: genetic diversity and geographical distribution. Genet Resour Crop Evol 57(4):587–595. doi:10.1007/s10722-009-9497-0

    Article  Google Scholar 

  • Melnikova NV, Mitrofanova OP, Liapounova OA, Kudryavtsev AM (2010b) Global diversity of durum wheat Triticum durum Desf. for alleles of gliadin-coding loci. Russ J Genet 46(1):43–49. doi:10.1134/S1022795410010072

    Article  CAS  Google Scholar 

  • Melnikova NV, Kudryavtseva AV, Kudryavtsev AM (2012) Catalogue of alleles of gliadin-coding loci in durum wheat (Triticum durum Desf.). Biochimie 94(2):551–557. doi:10.1016/j.biochi.2011.09.004

    Article  CAS  PubMed  Google Scholar 

  • Metakovsky EV (1991) Gliadin allele identification in common wheat. 2 Catalogue of gliadin alleles in common wheat. J Genet Breed 45:325–344

    Google Scholar 

  • Metakovsky EV, Branlard G (1998) Genetic diversity of French common wheat germplasm based on gliadin alleles. Theor Appl Genet 96(2):209–218. doi:10.1007/s001220050729

    Article  CAS  Google Scholar 

  • Metakovsky EV, Novoselskaya AY (1991) Gliadin allele identification in common wheat. I. Methodological aspects of the analysis of gliadin pattern by one-dimensional polyacrylamide gel electrophoresis. J Genet Breed 45:317–324

    Google Scholar 

  • Metakovsky EV, Koval SF, Movchan VK et al (1988) Genetic formulas of gliadin in cultivars of common wheat of Northern Kazakhstan. Breed Seed Farm 1:11–13 (in Russ.)

    Google Scholar 

  • Metakovsky EV, Kudryavtsev AM, Iakobashvili ZA, Novoselskaya AY (1989) Analysis of phylogenetic relations of durum, carthlicum and common wheats by means of comparison of alleles of gliadin-coding loci. Theor Appl Genet 77(6):881–887. doi:10.1007/BF00268342

    Article  CAS  PubMed  Google Scholar 

  • Metakovsky EV, Wrigley CW, Bekes F, Gupta RB (1990) Gluten polypeptides as useful genetic markers of dough quality in Australian wheats. Aust J Agric Res 41(2):289–306. doi:10.1071/AR9900289

    Article  Google Scholar 

  • Metakovsky EV, Knežević D, Javornik B (1991) Gliadin allele composition of Yugoslav winter wheat cultivars. Euphytica 54(3):285–295. doi:10.1007/BF00023005

    Google Scholar 

  • Metakovsky EV, Ng PK, Chernakov VM, Pogna NE, Bushuk W (1993) Gliadin alleles in Canadian western red spring wheat cultivars: use of two different procedures of acid polyacrylamide gel electrophoresis for gliadin separation. Genome 36(4):743–749. doi:10.1139/g93-099

    Article  CAS  PubMed  Google Scholar 

  • Metakovsky EV, Pogva NE, Blancardi AM, Redaelli R (1994) Gliadin allele composition of common wheat cultivars grown in Italy. J Genet Breed 48:55–66

    Google Scholar 

  • Metakovsky EV, Branlard GP, Chernakov VM, Upelniek VP, Redaelli R, Pogna NE (1997) Recombination mapping of some chromosome 1A-, 1B-, 1D- and 6B-controlled gliadins and low-molecular-weight glutenin subunits in common wheat. Theor Appl Genet 94(6–7):788–795. doi:10.1007/s001220050479

    Article  CAS  Google Scholar 

  • Metakovsky EV, Gomez M, Vazquez JF, Carrillo JM (2000) High genetic diversity of Spanish common wheats as judged from gliadin alleles. Plant Breed 119(1):37–42. doi:10.1046/j.1439-0523.2000.00450.x

    Article  CAS  Google Scholar 

  • Metakovsky EV, Branlard G, Graybosch RA, Bekes F, Cavanagh CR, Wrigley CW, Bushuk W (2006) The gluten composition of wheat varieties and genotypes. Part I. Gliadin composition table. http://www.aaccnet.org/initiatives/definitions/Documents/GlutenFree/I_gliadin.pdf. Accessed 27 July 2016

  • Mondal S, Hays DB, Alviola NJ, Mason RE, Tilley M, Waniska RD, Bean SR, Glover KD (2009) Functionality of gliadin proteins in wheat flour tortillas. J Agric Food Chem 57(4):1600–1605. doi:10.1021/jf802105e

    Article  CAS  PubMed  Google Scholar 

  • Morgunov AI, Rogers WJ, Sayers EJ, Metakovsky EV (1990) The high-molecular-weight glutenin subunit composition of Soviet wheat varieties. Euphytica 51(1):41–52. doi:10.1007/BF00022891

    Article  CAS  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Nat Acad Sci USA 70(12):3321–3323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nieto-Taladriz MT, Carrillo JM (1996) Complexity of the Gli-A3 locus in bread wheat. Plant Breed 115(3):192–194. doi:10.1111/j.1439-0523.1996.tb00900.x

    Article  CAS  Google Scholar 

  • Nikolaev AA, Pukhal’sky VA, Upelniek VP (2009) Genetic diversity of local spring bread wheats (Triticum aestivum L.) of West and East Siberia in gliadin genes. Russ J Genet 45(2):189–197. doi:10.1134/S1022795409020094

    Article  CAS  Google Scholar 

  • Novoselskaya-Dragovich AY (2015) Genetics and genomics of wheat: storage proteins, ecological plasticity, and immunity. Russ J Genet 51(5):476–490. doi:10.1134/S102279541505004X

    Article  CAS  Google Scholar 

  • Novoselskaya-Dragovich AY, Krupnov VA, Saifulin RA, Puhal’skii VA (2003) Dynamics of genetic variation at gliadin-coding loci in Saratov cultivars of common wheat Triticum aestivum L. over eight decades of scientific breeding. Russ J Genet 39(10):1130–1137. doi:10.1023/A:1026170709964

    Article  CAS  Google Scholar 

  • Novoselskaya-Dragovich AY, Fisenko AV, Imasheva AG, Pukhalskiy VA (2007) Comparative analysis of the genetic diversity dynamics at gliadin loci in the winter common wheat Triticum aestivum L. cultivars developed in Serbia and Italy over 40 years of scientific breeding. Russ. J Genet 43(11):1236–1242. doi:10.1134/S1022795407110051

    CAS  Google Scholar 

  • Novoselskaya-Dragovich AY, Fisenko AV, Yankovsky NK, Kudryavtsev AM, Yang Q, Lu Z, Wang D (2011) Genetic diversity of storage protein genes in common wheat (Triticum aestivum L.) cultivars from China and its comparison with genetic diversity of cultivars from other countries. Genet Resour Crop Evol 58(4):533–543. doi:10.1007/s10722-010-9596-y

    Article  Google Scholar 

  • Novoselskaya-Dragovich AY, Fisenko AV, Puhal’skii VA (2013) Genetic differentiation of common wheat cultivars using multiple alleles of gliadin coding loci. Russ J Genet 49(5):487–496. doi:10.1134/S1022795413020087

    Article  CAS  Google Scholar 

  • Novoselskaya-Dragovich AY, Bespalova LA, Shishkina AA, Melnik VA, Upelniek VP, Fisenko AV, Dedova LV, Kudryavtsev AM (2015) Genetic diversity of common wheat varieties at the gliadin-coding loci. Russ J Genet 51(3):262–271. doi:10.1134/S1022795415030102

    Article  CAS  Google Scholar 

  • Okovitaya RN, Shek GO, Kravchenko NA, Kobernitskii VI, et al. (1999) Catalog and short description of breeds of cereal and legume cultivars bred in Kazakh Research Institute of Grain Farming. KazNIIZ Shortandy, p 25 (in Russ.)

  • Ozuna CV, Iehisa JCM, Giménez MJ, Alvarez JB, Sousa C, Barro F (2015) Diversification of the celiac disease α-gliadin complex in wheat: a 33-mer peptide with six overlapping epitopes, evolved following polyploidization. Plant J 82(5):794–805. doi:10.1111/tpj.12851

    Article  CAS  PubMed  Google Scholar 

  • Payne PI, Holt LM, Hutchinson J, Bennett MD (1984) Development and characterisation of a line of bread wheat, Triticum aestivum, which lacks the short-arm satellite of chromosome 1B and the Gli-B1 locus. Theor Appl Genet 68(4):327–334. doi:10.1007/BF00267886

    Article  CAS  PubMed  Google Scholar 

  • Plessis A, Ravel C, Bordes J, Balfourier F, Martre P (2013) Association study of wheat grain protein composition reveals that gliadin and glutenin composition are trans-regulated by different chromosome regions. J Exp Bot 64(12):3627–3644. doi:10.1093/jxb/ert188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi PF, Wei YM, Yue YW, Yan ZH, Zheng YL (2006) Biochemical and molecular characterization of gliadins. Mol Biol 40(5):713–723. doi:10.1134/S0026893306050050

    Article  CAS  Google Scholar 

  • Ram S, Jain N, Dawar V, Singh RP, Shoran J (2005) Analyses of acid-PAGE gliadin pattern of Indian wheats (Triticum aestivum L.) representing different environments and periods. Crop Sci 45(4):1256–1263. doi:10.2135/cropsci2004.0334

    Article  CAS  Google Scholar 

  • Rashed MA, Abou-Deif MH, Sallam MAA, Rizkalla AA, Ramadan WA (2007) Identification and prediction of the flour quality of bread wheat by gliadin electrophoresis. J Appl Sci Res 3(11):1393–1399. doi:10.1016/j.jcs.2014.01.020

    CAS  Google Scholar 

  • Ruiz M, Rodriguez-Quijano M, Metakovsky EV, Vazquez JF, Carrillo JM (2002) Polymorphism, variation and genetic identity of Spanish common wheat germplasm based on gliadin alleles. Field Crops Res 79(2–3):185–196. doi:10.1016/S0378-4290(02)00139-9

    Article  Google Scholar 

  • Rutz RI (2005) Breeding Center of Siberian Research Institute of Agriculture is a leader of Siberian breeding. Russ J Genet Appl Res 9(3):357–368 (in Russ.)

    Google Scholar 

  • Salavati A, Sameri H, Shah-Nejat Boushehri AA, Yazdi-Samadi B (2008) Evaluation of genetic diversity in Iranian landrace wheat Triticum aestivum L. by using gliadin alleles. Asian J Plant Sci 7(5):440–446. doi:10.3923/ajps.2008.440.446

    Article  Google Scholar 

  • Sontag-Strohm T (1997) Gliadin and glutenin subunit alleles on group 1 chromosomes in Finnish spring wheats. Acta Agric Scand Sect B Soil Plant Sci 47(2):98–105. doi:10.1080/09064719709362446

    CAS  Google Scholar 

  • Sozinov AA, Metakovsky EV, Koval SF (1986) Genotype formation rules in wheat breeding. Ann Agric Sci 3:60–70 (in Russ.)

    Google Scholar 

  • Tkachuk R, Metlish VJ (1980) Wheat cultivar identification by high voltage gel electrophoresis. Ann Technol Agric 29:207–212

    CAS  Google Scholar 

  • Upelniek VP, Brezhneva TA, Dadashev SY, Novozhilova OA, Molkanova OI, Semikhov VF (2003) On the use of alleles of gliadin-coding loci as possible adaptability markers in the spring wheat (Triticum aestivum L.) cultivars during seed germination. Russ J Genet 39(12):1426–1431. doi:10.1023/B:RUGE.0000009158.41760.67

    Article  CAS  Google Scholar 

  • Utebayev MU, Dashkevich CV, Kradetskaya CM (2013) Polymorphism of alleles of gliadin-coding loci in cultivars of spring common wheat (Triticum aestivum L.). Ann Agric Sci Kazakh 1:17–22 (In Russ.)

    Google Scholar 

  • van de Wouw M, Kik C, van Hintum T, van Treuren R, Visser B (2009) Genetic erosion in crops: concept, research results and challenges. Plant Genetic Resour Charact Utiliz 8(1):1–15. doi:10.1017/S1479262109990062

    Article  Google Scholar 

  • van de Wouw M, van Hintum T, Kik C, van Treuren R, Visser B (2010) Genetic diversity trends in twentieth century crop cultivars: a meta analysis. Theor Appl Genet 120(6):1241–1252. doi:10.1007/s00122-009-1252-6

    Article  PubMed  PubMed Central  Google Scholar 

  • van Herpen TWJM, Goryunova SV, van der Schoot J et al (2006) Alpha-gliadin genes from the A, B, and D genomes of wheat contain different sets of celiac disease epitopes. BMC Genomics 7:1. doi:10.1186/1471-2164-7-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Waga J, Skoczowski A (2014) Development and characteristics of ω-gliadin-free wheat genotypes. Euphytica 195(1):105–116. doi:10.1007/s10681-013-0984-1

    Article  CAS  Google Scholar 

  • Wang A, Gao L, Li X, Zhang Y, He Z, Xia X, Zhang Y, Yan Y (2008) Characterization of two 1D-encoded ω-gliadin subunits closely related to dough strength and pan bread-making quality in common wheat (Triticum aestivum L.). J Cereal Sci 47(3):528–535. doi:10.1016/j.jcs.2007.06.009

    Article  CAS  Google Scholar 

  • Woychik JH, Boundy JA, Dimler RJ (1961) Starch-gel electrophoresis of wheat gluten proteins with concentrated urea. Arch Biochem Biophys 94(3):477–482. doi:10.1016/0003-9861(61)90075-3

    Article  CAS  PubMed  Google Scholar 

  • Wu F, Han ZX, Liu Y, Pan ZF, Deng GB, Yu MQ (2007) Unique gliadin patterns in Chinese winter wheat cultivars. Plant Breed 126(5):498–502. doi:10.1111/j.1439-0523.2007.01358.x

    Article  CAS  Google Scholar 

  • Xie Z, Wang C, Wang K, Wang S, Li X, Zhang Z, Ma W, Yan Y (2010) Molecular characterization of the celiac disease epitope domains in α-gliadin genes in Aegilops tauschii and hexaploid wheats (Triticum aestivum L.). Theor Appl Genet 121(7):1239–1251. doi:10.1007/s00122-010-1384-8

    Article  CAS  PubMed  Google Scholar 

  • Xynias IN, Kozub NO, Sozinov IA (2006) Seed storage protein composition of Hellenic bread wheat cultivars. Plant Breed 125(4):408–410. doi:10.1111/j.1439-0523.2006.01242.x

    Article  CAS  Google Scholar 

  • Zhang W, Gianibelli MC, Ma W, Rampling L, Gale KR (2003) Identification of SNPs and development of allele-specific PCR markers for γ-gliadin alleles in Triticum aestivum. Theor Appl Genet 107(1):130–138. doi:10.1007/s00122-003-1223-2

    CAS  PubMed  Google Scholar 

  • Zhang Y, Luo G, Liu D, Wang D, Yang W, Sun J, Zhang A, Zhan K (2015) Genome-, transcriptome- and proteome-wide analyses of the gliadin gene families in Triticum urartu. PLoS ONE 10(7):e0131559. doi:10.1371/journal.pone.0131559

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhivotovsky LA (1991) Population biometrics. Nauka Izdatelstvo RAN, Moskow (In Russ.)

    Google Scholar 

Download references

Acknowledgments

The study was performed with the support of Program 042 (212) by the Ministry of Agriculture Republic of Kazakhstan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maral Utebayev.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by M Capuana.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 235 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Utebayev, M., Dashkevich, S., Babkenov, A. et al. Application of gliadin polymorphism for pedigree analysis in common wheat (Triticum aestivum L.) from Northern Kazakhstan. Acta Physiol Plant 38, 204 (2016). https://doi.org/10.1007/s11738-016-2209-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-016-2209-4

Keywords

Navigation