Skip to main content
Log in

Role of exogenous abscisic acid in adapting of ‘Sultana’ grapevine to low-temperature stress

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Abscisic acid (ABA) has a key role in some plant species under low-temperature stress (LTS). In this study the effects of ABA at four concentrations (0, 50, 100 and 200 μΜ) on electrolyte leakage (EL), visual damage index, soluble carbohydrate, proline, total phenolic compound and relative water content (RWC) of leaves of ‘Sultana’ grapevines were studied under LTS (0, 4 and −4 °C). Moreover, to further elucidate the efficiency of foliar ABA on freezing tolerance, some relevant morpho-physiological changes were evaluated at three sampling dates: September, October and November. The increase in cane and leaf EL and the visible symptoms of leaf damage caused by LTS were minimized by the application of ABA. Moreover, in ABA-treated vines, specifically at 200 μM, the contents of soluble carbohydrate, proline and total phenolic increased and the RWC decreased. These alterations in ABA-induced metabolism alleviated the deleterious effects of LTS on ‘Sultana’ grapevine. Freezing tolerance of ABA-treated vines improved within each sampling date in autumn. Foliar application of ABA at 200 μM decreased LT50 in September, October and November by −2.6, −3.6 and −3.9 °C, respectively, as compared to those of control vines. This study also demonstrated that ABA was effective in shoot growth inhibition, leaf abscission and periderm development, indicating that ABA treatments advanced cold acclimation in grapevines. Increased fall freezing tolerance induced by foliar ABA application may be beneficial in nurseries, new established vineyards and for late-bearing cultivars in regions with fall frost events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ait-Barka E, Audran JC (1997) Response of champenoise grapevine to low temperatures: changes of shoot and bud proline concentrations in response to low temperatures and correlations with freezing tolerance. J Hort Sci Biotechnol 72:577–582

    Google Scholar 

  • Anchordoguy T, Rudolph A, Carpenter J, Crowe J (1987) Modes of interaction of cryoprotectants with membrane phospholipids during freezing. Cryobiology 24:324–331

    Article  CAS  PubMed  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bravo LA, Zúñiga GE, Alberdi M, Corcuera LJ (1998) The role of ABA in freezing tolerance and cold acclimation in barley. Physiol Plantarum 103:17–23

    Article  CAS  Google Scholar 

  • Campos PS, Quartin V, Ramalho JC, Nunes MA (2003) Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. plants. J Plant Physiol 160:283–292

    Article  CAS  PubMed  Google Scholar 

  • Cansev A, Gulen H, Celik G, Eris A (2012) Alteration in total phenolic content and antioxidant capacity in response to low temperatures in Olive (Olea europaea L. Gemlik). Plant Arch 12:489–494

    Google Scholar 

  • Chen WP, Li PH (2002) Attenuation of reactive oxygen production during chilling in ABA-treated maize cultured cells. In: Li C, Palva ET (eds) Plant cold hardiness. Kluwer Academic Publishers, Dordrecht, pp 223–233

    Chapter  Google Scholar 

  • Clarke C, Woods RJ, Glushka J, Cooper A, Nutley MA, Boons GJ (2001) Involvement of water in carbohydrate-protein binding. J Am Chem Soc 123:12238–12247

    Article  CAS  PubMed  Google Scholar 

  • Dami IE, Beam BA (2004) Response of grapevines to soybean oil application. Am J Enol Vitic 55:269–275

    Google Scholar 

  • Dixon RA, Paiva N (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ershadi A, Taheri S (2013) Effect of salicylic acid on spring frost tolerance of grape (vitis vinifera) cultivar ‘Bidaneh Sefid’. Agricult Crop Manag (J Agricult) 15:135–146. http://journals.ut.ac.ir

  • Faltusová-Kadlecová Z, Faltus M, Prášil I (2002) Abscisic acid content during cold hardening of barley and wheat cultivars with different freezing tolerance. Rostlinná Výroba 48:490–493

    Google Scholar 

  • Fry JD, Lang NS, Clifton RGP, Maier FP (1993) Freezing tolerance and carbohydrate content of low-temperature acclimated and nonacclimated centipedes. Crop Sci 33:1051–1055

    Article  CAS  Google Scholar 

  • Guak S, Fuchigami LH (2001) Effects of applied ABA on growth cessation, bud dormancy, cold acclimation, leaf senescence and N mobilization in apple nursery plants. J Hort Sci Biotechnol 76:459–464

    CAS  Google Scholar 

  • Guo WL, Chen RG, Gong ZH, Yin YX, Ahmed SS, He YM (2012) Exogenous abscisic acid increases antioxidant enzymes and related gene expression in pepper (Capsicum annuum) leaves subjected to chilling stress. Genet Mol Res 11:4063–4080

    Article  CAS  PubMed  Google Scholar 

  • Guschina IA, Harwood JL, Smith M, Beckett RP (2002) Abscisic acid modifies the changes in lipids brought about by water stress in the moss Atrichum androgynum. New Phytol 156:255–264

    Article  CAS  Google Scholar 

  • Gusta LV, Trischuk R, Weiser CJ (2005) Plant cold acclimation: the role of abscisic acid. J Plant Growth Regulat 24:308–318

    Article  CAS  Google Scholar 

  • Hamman RA, Dami E, Walsh TM, Stushnoff C (1996) Seasonal carbohydrate changes and cold hardiness of Chardonnay and Riesling grapevines. Amer J Enol Viticult 47:31–36

    CAS  Google Scholar 

  • Hare PD, Cress WA (1997) Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul 21:79–102

    Article  CAS  Google Scholar 

  • Hoffmann-Benning S, Kende H (1992) On the role of abscisic-acid and gibberellin in the regulation of growth in rice. Plant Physiol 99:1156–1161

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jiang M-Y, Zhang J-H (2004) Abscisic acid and antioxidant defense in plant cells. Acta Bot Sin 46:1–9

    CAS  Google Scholar 

  • John C, Ferguso JM, Tarara LJ, Mills GG, Grove MK (2010) Dynamic thermal time model of cold hardiness for dormant grapevine buds. Ann Bot 49:4–12

    Google Scholar 

  • Jones KS, Paroschy J, McKersie BD, Bowley SR (1999) Carbohydrate composition and freezing tolerance of canes and buds in Vitis vinifera. J Plant Physiol 155:101–106

    Article  CAS  Google Scholar 

  • Kalberer SR, Wisniewski M, Arora R (2006) Deacclimation and reacclimation of cold-hardy plants: current understanding and emerging concepts. Plant Sci 171:3–16

    Article  CAS  Google Scholar 

  • Karimi R, Ershadi A, Esna-Ashari M, Akbar Booja MM (2015) Seasonal changes in soluble proteins, total phenol and malondialdehyde content and their relationship with cold hardiness of some grapevine cultivars. Agricult Crop Manag (J Agricult) 16:999–1013. http://journals.ut.ac.ir

  • Kirnak H, Kaya C, Tas I, Higgs D (2001) The influence of water deficit on vegetative growth, physiology, fruit yield and quality in egg plants. Bulg J Plant Physiol 27:34–46

    Google Scholar 

  • Korkmaz A, Korkmaz Y, Demirkiran AR (2010) Enhancing chilling stress tolerance of pepper seedlings by exogenous application of 5-aminolevulinic acid. Environ Exp Bot 67:495–501

    Article  CAS  Google Scholar 

  • Koussa T, Zaoui D, Broquedis M (1998) Relationship between the levels of abscisic acid in latent buds, in leaves and in internodes of Vitis vinifera L. cv. merlot during the dormancy phase. J Int Sci Vigne Vin 32:203–210

    CAS  Google Scholar 

  • Li CY, Junttila O, Heino P, Palva ET (2003) Different responses of northern and southern ecotypes of Betula pendula to exogenous ABA application. Tree Physiol 23:481–487

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Zhao X, Sandhu AK, Gu L (2010) Effects of exogenous abscisic acid on yield, antioxidant capacities, and phytochemical contents of greenhouse grown lettuces. J Agric Food Chem 58:6503–6509

    Article  CAS  PubMed  Google Scholar 

  • Ma YY, Zhang YL, Shao H, Lu J (2010) Differential physio-biochemical responses to cold stress of cold-tolerant and non-tolerant grapes (Vitis L.) from China. J Agron Crop Sci 196:212–219

    Article  CAS  Google Scholar 

  • Mantyla E, Lang V, Palva ET (1995) Role of abscisic acid in drought-induced freezing tolerance, cold acclimation, and accumulation of LT178 and RAB18 proteins in Arabidopsis thaliana. Plant Physiol 107:141–148

    PubMed Central  PubMed  Google Scholar 

  • Marian CO, Krebs SL, Arora R (2004) Dehydrin variability among Rhododendron species: a 25-kDa dehydrin is conserved and associated with cold acclimation across diverse species. New Phytol 161:773–780

    Article  CAS  Google Scholar 

  • Matysik J, Alia A, Bhalu B, Mohanty P (2002) Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci 82:525–532

    CAS  Google Scholar 

  • McKay HM (1992) Electrolyte leakage from fine roots of conifer seedlings: a rapid index of plant vitality following cold storage. Can J For Res 22:1371–1377

    Article  Google Scholar 

  • Mcwilliam JR, Kramer PJ, Musser RL (1982) Temperature-induced water stress in chilling-sensitive plants. Aust J Plant Physiol 9:343–352

    Article  Google Scholar 

  • Meng FZh, Hu LP, Wang SH, Sui XL, Wei L, Wei YX, Sun JL, Zhang ZhX (2008) Effects of exogenous abscisic acid (ABA) on cucumber seedling leaf carbohydrate metabolism under low temperature. Plant Growth Regul 56:233–244

    Article  CAS  Google Scholar 

  • Mochioka R, Tohbe M, Horiuchi S, Ogata T, Shiozaki S, Kawase KJ, Kurooka H, Matsui H (1996) The relationship between bud dormancy and the endogenous ABA and water contents of several wild grape species native to Japan. J Jpn Soc Hortic Sci 65:49–54

    Article  CAS  Google Scholar 

  • Patton AJ, Cunningham SM, Volenec JJ, Reicher ZJ (2007) Differences in freeze tolerance of Zoysiagrasses: II Carbohydrate and proline accumulation. Crop Sci 47:5

    Google Scholar 

  • Pennycooke JC, Cox S, Stushnoff C (2005) Relationship of cold acclimation, total phenolic content and antioxidant capacity with chilling tolerance in petunia (Petunia x hybrida). Environ Exp Bot 53:225–232

    Article  CAS  Google Scholar 

  • Rice-Evans CA, Miller NJ, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152–159

    Article  Google Scholar 

  • Rudolph AS, Crowe JH, Crowe LM (1986) Effects of three stabilizing agents—proline, betaine, and trehalose- on membrane phospholipids. Arch Biochem Biophys 245:134–143

    Article  CAS  PubMed  Google Scholar 

  • Salaj J (1999) Effect of low temperatures on the structure of plant cells. Handbook Plant Crop Stress 2:441

    Article  Google Scholar 

  • Salzman RA, Bressan RA, Hasegawa PM, Ashworth EN, Bordelon BP (1996) Programmed accumulation of LEA-like proteins during desiccation and cold acclimation of overwintering grape buds. Plant Cell Environ 19:713–720

    Article  CAS  Google Scholar 

  • Santarius KA (1992) Freezing of isolated thylakoid membranes in complex media. VIII. Differential cryoprotection by sucrose, proline and glycerol. Plant Physiol 84:87–93

    Article  CAS  Google Scholar 

  • Shashikumar K, Nus JL (1993) Cultivar and winter cover effects on bermudagrass cold acclimation and crown moisture content. Crop Sci 33:813–817

    Article  Google Scholar 

  • Soloklui AAG, Ershadi A, Fallahi E (2012) Evaluation of cold hardiness in seven Iranian commercial pomegranate (Punica granatum L.) cultivars. Hort Science 47:1821–1825

    Google Scholar 

  • Velioglu YS, Mazza G, Gao L, Oomah BD (1998) Antioxidant activity and total phenolics in selected fruits, vegetables and grain products. J Agric Food Chem 46:4113–4117

    Article  CAS  Google Scholar 

  • Verslues PE, Bray EA (2006) Role of abscisic acid (ABA) and Arabidopsis thalianaABA-insensitive loci in low water potential-induced ABA and proline accumulation. J Exp Bot 57:201–212

    Article  CAS  PubMed  Google Scholar 

  • Verslues PE, Zhu JK (2005) Before and beyond ABA: upstream sensing and internal signals that determine ABA accumulation and response under abiotic stress. Biochem Soc Trans 33:375–379

    Article  CAS  PubMed  Google Scholar 

  • Xiao H, Siddiqua M, Braybrook S, Nassuth A (2006) Three grape CBF/DREB1 genes respond to low temperature, drought and abscisic acid. Plant Cell Environ 29:1410–1421

    Article  CAS  PubMed  Google Scholar 

  • Xing W, Rajashekar CB (2001) Glycine betaine involvement in freezing tolerance and water stress in Arabidopsis thaliana. Environ Exp Bot 46:21–28

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14:S165–S183

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang H, Li H, Rao L, Long G, Shi G, Peng G (2011) Effects of exogenous ABA on antioxidant enzymes in detached citrus leaves treated by rapid freezing. Afr J Biotechnol 10:9779–9785

    CAS  Google Scholar 

  • Yemm EW, Willis AJ (1954) The estimation of carbohydrates in plant extracts by anthrone. Biochem J 57:508–514

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Y, Dami I (2012) Foliar application of abscisic acid increases freezing tolerance of field-grown Vitis vinifera cabernet franc grapevines. Am J Enol Vitic 63(3):377–384

    Article  CAS  Google Scholar 

  • Zhang X, Wang K, Ervin EH (2008) Bermudagrass freezing tolerance associated with abscisic acid metabolism and dehydrin expression during cold acclimation. J Am Soc Hortic Sci 133:542–550

    Google Scholar 

  • Zhang Y, Mechlin T, Dami I (2011) Foliar application of abscisic acid induces dormancy responses in greenhouse-grown grapevines. Hort Sci 46:1271–1277

    CAS  Google Scholar 

  • Zhang Y, Jiang W, Yu H, Yang X (2012) Exogenous abscisic acid alleviates low temperature-induced oxidative damage in seedlings of Cucumis sativus. L.). T Chin Soc Agr Eng 28:221–228

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rouhollah Karimi.

Additional information

Communicated by L. Bavaresco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi, R., Ershadi, A. Role of exogenous abscisic acid in adapting of ‘Sultana’ grapevine to low-temperature stress. Acta Physiol Plant 37, 151 (2015). https://doi.org/10.1007/s11738-015-1902-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-015-1902-z

Keywords

Navigation