Skip to main content

Attenuation of Reactive Oxygen Production During Chilling in ABA-Treated Maize Cultured Cells

  • Chapter
Plant Cold Hardiness

Abstract

Plants encounter a wide range of environmental stresses, such as low/high temperatures, high light, drought and high salinity, during a typical life cycle. A key sign of plant stress at a molecular level is the increased production of reactive oxygen species (ROS), which result from an imbalance in the accumulation and removal of ROS during aerobic metabolism. In plants, mitochondria and chloroplasts are considered as two major sites of ROS production. Despite the role of ROS as a phytotoxin at high concentrations, recent evidence suggests that relatively low levels of ROS can serve as a signaling for plant stress acclimation (Bowler and Fluhr, 2000; Dat et al., 2000). This novel finding indicates that ROS are not simply toxic by-products of metabolism but also function as signaling molecules. Therefore, the control of ROS levels in plants during their responses to external stimuli is extremely important, because it may decide whether plants become adapted to stress or are injured by insults.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, G. J. and Sanders, D., 2000, Alteration of stimulus-specific guard cell calcium oscillations and stomatal closing in Arabidopsis det3 mutant,Science 289: 2338–2342.

    Article  PubMed  CAS  Google Scholar 

  • Allen, R. D., Webb, R. P. and Schake S. A., 1997, Use of transgenic plants to study antioxidant defenses,Free Rad. Biol. Med. 23: 473–479.

    Article  PubMed  CAS  Google Scholar 

  • Auh, C. K. and Murphy, T. M., 1995, Plasma membrane redox enzyme is involved in the synthesis of 02 and H202 by phytophthora elicitor-stimulated rose cells,Plant Physiol. 107: 1241–1247.

    PubMed  CAS  Google Scholar 

  • Beers E. P. and McDowell J. M., 2001, Regulation and execution of programmed cell death in response to pathogens, stress and developmental cues,Curr. Opin. Plant Biol. 4: 561–567.

    Article  PubMed  CAS  Google Scholar 

  • Bokros, C. L., Hugdahl, J. D., Blumenthal, S. S. D. and Morejohn L. C., 1996, Proteolytic analysis of polymerized maize tubulin: regulation of microtubule stability to low temperature and Ca2+ by the carboxyl termius of beta-tubulin,Plant Cell Environ. 19: 539–548.

    Article  CAS  Google Scholar 

  • Bowler, C. and Fluhr, R., 2000, The role of calcium and activated oxygens as signals for controlling cross-tolerance,Trends Plant Sci. 5: 241–246.

    Article  PubMed  CAS  Google Scholar 

  • Bueno, P., Piqueras, A., Kurepa, J., Savoure, A., Verbruggen, N., Van Montagu, M. and Inze, D., 1998, Expression of antioxidant enzymes in response to abscisic acid and high osmoticum in tobacco BY-2 cell cultures,Plant Sci. 138: 27–34.

    Article  CAS  Google Scholar 

  • Bush D. S., 1995, Calcium regulation in plant cells and its role in signaling, Annu. Rev. Plant Physiol.Plant Mol. Biol. 46: 95–122.

    Article  CAS  Google Scholar 

  • Chandra, S. and Low, P. S., 1997, Measurement of Ca2+ fluxes during elicitation of the oxidative burst in aequorin-transformed tobacco cells,J. Biol.Chem. 272: 28274–28280.

    Article  PubMed  CAS  Google Scholar 

  • Charles, S. A. and Halliwell, B., 1980, Action of calcium ion on spinach (Spinacia oleracea) chloroplast fructose bisphosphatase and other enzymes in the Calvin cycle,Biochem J. 188: 775–779.

    PubMed  CAS  Google Scholar 

  • Chen, W. P. and Li P. H., 2001, Chilling-induced Ca2+ overload enhances production of active oxygen species in maize (Zea mays L.) cultured cells: the effect of abscisic acid treatment,Plant Cell Environ.24: 791–800.

    Article  CAS  Google Scholar 

  • Chen, W. P., Li, P. H. and Chen, T. H. H., 2000, Glycinebetaine increases chilling tolerance and reduces chilling-induced lipid peroxidation in Zea mays L,Plant Cell Environ. 24: 609–618.

    Article  Google Scholar 

  • D’Silva, I., Poirier, G. G. and Heath, M. C., 1998, Activation of cysteine proteases in cowpea plants during the hypersensitive response. A form of programmed cell death,Exp. Cell Res. 245: 389–399.

    Article  PubMed  Google Scholar 

  • Dat, J., Vandenabeele, S., Vranová, E., Van Montagu, M., Inzé, D. and Van Breusegem, F., 2000, Dual action of the active oxygen species during plant stress responses,Cell. Mol. Life Sci. 57: 779–795.

    Article  PubMed  CAS  Google Scholar 

  • Geisler, M., Frangne, N., Gomes, E., Martinoia, E. and Palmgren, M. G., 2000, The ACA4 gene of Arabidopsis encodes a vacuolar membrane calcium pump that improves salt tolerance in yeast,Plant Physiol. 124:1814–1827.

    Article  PubMed  CAS  Google Scholar 

  • Gonzàlez-Meler, M. A., Ribas-Carbo, M., Giles, L. and Siedow, J. N., 1999, The effect of growth and measurement temperature on the activity of the alternative respiratory pathway,Plant Physiol. 120: 765–772.

    Article  PubMed  Google Scholar 

  • Guan, L. and Scandalios, J. G., 1998, Two structurally similar maize cytosolic superoxide dismutase genes, Sod4 and Sod4A, respond differentially to abscisic acid and high osmoticum,Plant Physiol. 117: 217–224.

    Article  PubMed  CAS  Google Scholar 

  • Guan, L. M., Zhao, J. and Scandalios, J. G., 2000, Cis-elements and trans-factors that regulate expression of the maize Cat1 antioxidant gene in response to ABA and osmotic stress: H2O2 is the likely intermediary signaling molecule for the response,Plant J. 22: 87–95.

    Article  PubMed  CAS  Google Scholar 

  • Hare, P.D. and Cress, W.A., 1997, Metabolic implications of stress-induced proline accumulation in plants,Plant Growth Regul. 21: 79–102.

    Article  CAS  Google Scholar 

  • Hepler, P. K. and Wayne, R. O., 1985, Ca2+ and plant development,Annu. Rev. Plant Physiol. 36: 397–439.

    Article  CAS  Google Scholar 

  • Jian, L. C, Li, J. H., Chen, W. P., Li, P. H. and Ahlstrand, G. G. 1999, Cytochemical localization of calcium and Ca2+-ATPase activity in plant cells under chilling stress: a comparative study between the chilling-sensitive maize and the chilling-insensitive winter wheat,Plant Cell Physiol. 40: 1061 -1071.

    Article  CAS  Google Scholar 

  • Kingston-Smith, A. H., Harbinson, J. and Foyer, C. H., 1999, Acclimation of photosynthesis, H202 content and antioxidants in maize (Zea mays) grown at sub-optimal temperature,Plant Cell Environ. 22: 1071–1083.

    Article  CAS  Google Scholar 

  • Knight, H., Trewavas, A. J. and Knight, M. R., 1996, Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation,Plant Cell 8: 489–503.

    PubMed  CAS  Google Scholar 

  • Kowaltowski, A. J., Castilho, R. F. and Vercesi, A. E., 1995, Ca2+-induced mitochondrial membrane permeabilization: role of coenzyme Q redox state,Amer. J. Physiol. 269: 141–147.

    Google Scholar 

  • Kowaltowski, A. J., Costa, A. D. T. and Vercesi, A. E., 1998, Activation of the potato plant uncoupling mitochondrial protein inhibits reactive oxygen species generation by the respiratory chain,FEBS Lett. 425:213–216.

    Article  PubMed  CAS  Google Scholar 

  • Kratsch, H. A. and Wise, R. R., 2000, The ultrastructure of chilling stress,Plant Cell Environ. 23: 337–350.

    Article  CAS  Google Scholar 

  • Levine, A., Tenhaken, R., Dixon, R. and Lamb, C. 1994, H202 from the oxidative burst orchestrates the plant hypersensitive disease resistance response,Cell 79: 583–593.

    Article  PubMed  CAS  Google Scholar 

  • Lyons, J. M., 1973, Chilling injury in plants,Annu. Rev. Plant Physiol. 24: 445–466.

    Article  CAS  Google Scholar 

  • Maiaa, I. G., Benedettia, C. E., Leitea, A, Turcinellia, S. R., Vercesic, A. E. and Arruda P., 1998, AtPUMP: an Arabidopsis gene encoding a plant uncoupling mitochondrial protein,FEBS Lett. 429: 403–406.

    Article  Google Scholar 

  • Maxwell, D. P., Wang, Y. and Mclntosh, L. 1999, The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells,Proc. Natl. Acad. Sci. USA 96: 8271–8276.

    Article  PubMed  CAS  Google Scholar 

  • McKersie, B. D. and Bowley, S. R., 1998, Active oxygen and freezing tolerance in transgenic plants, in:Plant Cold Hardiness: Molecular Biology, Biochemistry, and Physiology, P. H. Li and T. H. H. Chen, eds, Plenum Press, New York, pp. 203–214.

    Google Scholar 

  • Millenaar, F. F., Benschop, J. J., Wagner, A. M. and Lamber, H., 1998, The role of the alternative oxidase in stabilizing the in vivo reduction state of the ubiquinone pool and the activation state of the alternative oxidase,Plant Physiol. 118: 599–607.

    Article  PubMed  CAS  Google Scholar 

  • Minorsky, P. V., 1985, A heuristic hypothesis of chilling injury in plants: A role for Ca2+ as the primary physiological transducer in injury,Plant Cell Environ. 8: 75–94.

    Google Scholar 

  • Mittler, R. and Lam, E., 1995, Identification, characterization, and purification of a tobacco endonuclease activity induced upon hypersensitive response cell death,Plant Cell 7: 1951–1962.

    PubMed  CAS  Google Scholar 

  • Mittler, R., Feng, X. Q. and Cohen, M., 1998, Post-transcriptional suppression of cytosolic ascorbate peroxidase expression during pathogen-induced programmed cell death in tobacco,Plant Cell 10: 461–473.

    PubMed  CAS  Google Scholar 

  • Møller, I. M., 2001, Plant mitochondria and oxidative stress: Electron transport, NADPH turnover, and metabolism of reactive oxygen species,Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: 561–591.

    Article  PubMed  Google Scholar 

  • Monroy, A. F. and Dhindsa, R. S., 1995, Low-temperature signal transduction: Induction of cold acclimation-specific genes of alfelfe by Ca2+ at 25°C,Plant Cell 7: 321 -331.

    PubMed  CAS  Google Scholar 

  • Pei, Z. M., Murata, Y., Benning, G., Thomine, S., Klusener, B., Allen, G. J., Grill, E. and Schroeder, J. I., 2000, Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells,Nature 406:731–734.

    Google Scholar 

  • Popov, V. N., Simonian, R. A., Skulachev, V. P. and Starkov, A. A., 1997, Inhibition of the alternative oxidase stimulates H2O2 production in plant mitochondria,FEBS Lett 415: 87–90.

    Article  PubMed  CAS  Google Scholar 

  • Prasad, T. K., Anderson, M. D.; Martin, B. A. and Steward, C. R., 1994, Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide,Plant Cell 6: 65–74.

    PubMed  CAS  Google Scholar 

  • Price, A. H., Taylor, A., Ripley, S. J., Griffiths, A., Trewavas, A. J. and Knight, M. R., 1994, Oxidative signals in tobacco increase cytosolic calcium,Plant Cell 6: 1301–1310.

    PubMed  CAS  Google Scholar 

  • Puntarulo, S., Galleano, M., Sanchez, R. A. and Boveris, A., 1991, Superoxide anion and hydrogen peroxide metabolism in soybean embryonic axes during germination,Biochim. Biophys. Acta 1074: 277–283.

    Article  PubMed  CAS  Google Scholar 

  • Purvis, A. C. and Shewfelt, R. L., 1993, Does the alternative pathway ameliorate chilling injury in sensitive plant tissues?Physiol. Plant. 88: 712–718.

    Article  CAS  Google Scholar 

  • Ramesha, C. S. and Thompson, G. A., 1984, The mechanism of membrane response to chilling: Effect of temperature on phospholipids deacylation and reacylation reactions in the cells surface membrane,J. Biol. Chem. 259: 8706–8712.

    PubMed  CAS  Google Scholar 

  • Ribas-Carbo, M., Aroca, R., Gonzàlez-Meler, M. A., Irigoyen, J. J. and Sánchez-Díaz, M., 2000, The electron partitioning between the cytochrome and alternative respiratory pathways during chilling recovery in two cultivars of maize differing in chilling sensitivity,Plant Physiol. 122: 199–204.

    Article  PubMed  CAS  Google Scholar 

  • Sanders, D., Brownlee, C. and Harper J. F., 1999, Communication with calcium,Plant Cell 11: 691–706.

    PubMed  CAS  Google Scholar 

  • Scandalios, J. G., 1993, Oxygen stress and superoxide dismutases,Plant Physiol. 101: 7–12.

    PubMed  CAS  Google Scholar 

  • Smirnoff N. and Cumbes, Q. J., 1989, Hydroxyl radical scavenging activity of compatible solutes,Phytochemistry 28: 1057–1060.

    Article  CAS  Google Scholar 

  • Thomas, D. J., Thomas, J. B., Prier, S. D., Nasso, N. E. and Herbert, S. K., 1999, Iron superoxide dismutase protects against chilling damage in the cyanobacterium synechococcus species PCC7942,Plant Physiol. 112: 275–282.

    Article  Google Scholar 

  • Vanlerberghe, G. C., 1997, Alternative oxidase: from gene to function,Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 703–734.

    Article  PubMed  CAS  Google Scholar 

  • Vanlerberghe, G. C. and Mclntosh, L., 1992, Lower temperature increases alternative pathway capacity and alternative oxidase protein in tobacco,Plant Physiol. 100: 115–119.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, A. M., 1995, A role for active oxygen species as second messengers in the induction of alternative oxidase gene expression in Petunia hybrida cells,FEBS Lett. 368: 339–342.

    Article  PubMed  CAS  Google Scholar 

  • Wang, M., Van Duijn, B. and Schram, A.W., 1991, Abscisic acid induces a cytosolic calcium decrease in barley aleurone protoplasts,FEBS Lett. 278: 69–74.

    Article  PubMed  CAS  Google Scholar 

  • Wise, R. R. and Naylor, A. W., 1987, Chilling-enhanced photooxidation. The peroxidative destruction of lipids during chilling injury to photosynthesis and ultrastructure,Plant Physiol. 83: 272–277.

    Article  PubMed  CAS  Google Scholar 

  • Xin, Z. G. and Li, P. H., 1992, Abscisic acid-induced chilling tolerance in maize suspension-cultured cells,Plant Physiol. 99: 707–711.

    Article  PubMed  CAS  Google Scholar 

  • Xu, H. X. and Heath, M. C., 1998, Role of calcium in signal transduction during the hypersensitive response caused by basidiospore-derived infection of the cowpea rust fungus,Plant Cell 10: 585–597.

    PubMed  CAS  Google Scholar 

  • Zhu, D. and Scandalios J. G., 1994, Differential accumulation of manganese-superoxide dismutase transcripts in maize in response to abscisic acid and high osmoticum,Plant Physiol. 106: 173–178.

    PubMed  CAS  Google Scholar 

  • Zsoldos, F. and Karvaly B., 1979, Cold-shock injury and its relation to ion transport by roots, in:Low temperature Stress in Crop Plants, J. M. Lyons, D. Graham and J. K. Raison, eds, Academic Press Inc, New York, pp. 123–138.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chen, WP., Paul, H.L. (2002). Attenuation of Reactive Oxygen Production During Chilling in ABA-Treated Maize Cultured Cells. In: Li, P.H., Palva, E.T. (eds) Plant Cold Hardiness. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0711-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0711-6_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5205-1

  • Online ISBN: 978-1-4615-0711-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics