Skip to main content
Log in

Stress-induced Δ1-pyrroline-5-carboxylate synthetase (P5CS) gene confers tolerance to salt stress in transgenic sugarcane

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

High salinity interferes in sugarcane growth and development, affecting not only crop yield but also reducing sucrose concentration in culms. Sugarcane plants submitted to salt stress can accumulate compatible solutes, such as proline, which may counteract the effects of salt accumulation in the vacuole and scavenge reactive oxygen species. The objective of this study was to evaluate the response to salt stress of sugarcane plants transformed with the Vigna aconitifolia P5CS gene, which encodes ∆1-pyrroline-5-carboxylate synthetase, under the control of a stress-induced promoter AIPC (ABA-inducible promoter complex). For this, 4-month-old clonally multiplied sugarcane plants from two transformation events were irrigated every 2 days with 1/10 Hoagland’s solution supplemented with 100, 150 and 200 NaCl, progressively, during 28 days. Transgenic lines showed increased transgene expression in 3.75-fold when compared with the control plants after 9 days of irrigation with saline water, which can explain the higher proline concentration found in these plants. At the end of the experiment (day 28), the transgenic lines accumulated up to 25 % higher amounts of proline when compared with non-transformed control plants. Stress response in transgenic plants was also accompanied by a reduction of malondialdehyde (MDA) derived from cellular lipid peroxidation in leaves, lower Na+ accumulation in leaves and maintenance of photochemical efficiency of PSII. Thus, proline contributed to the protection of the photosynthetic apparatus and the prevention of oxidative damage in transgenic sugarcane under salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AIPC :

ABA-inducible promoter complex

EC:

Electrical conductivity

MDA:

Malondialdehyde

MPa:

Mega pascal

P5CS :

Δ1-Pyrroline-5-carboxylate synthetase

ROS:

Reactive oxygen species

References

  • Ahire ML, Walunj PR, Kishor PBK, Nikam TD (2013) Effect of sodium chloride-induced stress on growth, proline, glycine betaine accumulation, antioxidative defence and bacoside A content in in vitro regenerated shoots of Bacopa monnieri (L.) Pennell. Acta Physiol Plant 35(6):1943–1953. doi:10.1007/s11738-013-1233

    CAS  Google Scholar 

  • Ahmed CB, Magdich S, Rouina BB, Sensoy S, Boukhris M, Abdullah FB (2011) Exogenous proline effects on water relations and ions contents in leaves and roots of young olive. Amino Acids 40:565–573. doi:10.1007/s00726-010-0677-1

    Article  PubMed  Google Scholar 

  • Akhtar S, Wahid A, Rasul E (2003) Emergence, growth and nutrient composition of sugarcane sprouts under NaCl salinity. Biol Plant 46:113–116. doi:10.1023/1022326604192

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Blackburn F (1984) Sugarcane. Longman, London

    Google Scholar 

  • Carvalho K, Campos MKF, Domingues SD, Pereira LFP, Vieira LGE (2013) The accumulation of endogenous proline induces changes in gene expression of several antioxidant enzymes in leaves of transgenic Swingle citrumelo. Mol Biol Rep 40(4):3269–3279. doi:10.1007/s11033-012-2402-5

    Article  CAS  PubMed  Google Scholar 

  • Cha-um S, Kirdmanee C (2009) Proline accumulation, photosynthetic abilities and growth characters of sugarcane (Saccharum officinarum L.) plantlets in response to iso-osmotic salt and water-deficit stress. Agric Sci China 8(1):51–58

    Article  CAS  Google Scholar 

  • Cramer GR, Lduchli A, Polito VS (1985) Displacement of Ca+ by Na+ from the plasmalemma of root cells. A primary response to salt stress? Plant Physiol 79:207–211

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Davies KJ (1995) Oxidative stress: the paradox of aerobic life. Biochem Soc Symp 61:1–31

    CAS  PubMed  Google Scholar 

  • Errabii T, Gandonou CB, Essalmani H, Abrini J, Idaomar M, Senhaji NS (2007) Effect of NaCl and mannitol induced stress on sugarcane (Saccharum sp.) callus cultures. Acta Physiol Plant 29:95–102. doi:10.1007/s11738-006-0006-1

    CAS  Google Scholar 

  • Ferreira WA (1980) Effect of vinasse in different soil textures. M.Sc. Thesis, University of São Paulo, SP, Brazil

  • Fricke W, Akhiyarova G, Veselov D, Kudoyarova G (2004) Rapid and tissue-specific changes in ABA and in growth rate response to salinity in barley leaves. J Exp Bot 55(399):1115–1123. doi:10.1093/117

    Article  CAS  PubMed  Google Scholar 

  • Gandonou CB, Errabii T, Abrini J, Idaomar M, Senhaji NS (2006) Selection of callus cultures of sugarcane (Saccharum sp.) tolerant to NaCl and their responses to salt stress. Plant Cell Tissue Organ Cult 87:9–16. doi:10.1007/s11240-006-9113-3

    Article  CAS  Google Scholar 

  • Genc Y, Mcdonald GK, Tester M (2007) Reassessment of tissue Na+ concentration as a criterion for salinity tolerance in bread wheat. Plant Cell Environ 30:1486–1498. doi:10.1111/1365-3040.2007.01726

    Article  CAS  PubMed  Google Scholar 

  • Hare PD, Cress WA, Van Staden J (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21:535–554. doi:10.1046/1365-3040.1998.00309

    Article  CAS  Google Scholar 

  • Hare PD, Cress WA, Van Standen J (2003) A regulatory role for proline metabolism in stimulation Arabidopsis thaliana seed germination. Plant Growth Regul 39:41–50. doi:10.1023/1021835902351

    Article  CAS  Google Scholar 

  • Heath R, Packer L (1968) Photoperoxidation in isolated choloplast I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198. doi:10.1016/0003-9861(68)90654-1

    Article  CAS  PubMed  Google Scholar 

  • Hong Z, Lakkineni K, Zhang Z, Verma DPS (2000) Removal of feedback inhibition of D1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136. doi:10.1104/122.4.1129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hu C-AA, Delauney AJ, Verma DPS (1992) A bifunctional enzyme (Δ1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. Proc Natl Acad Sci USA 89:9354–9358

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hussain A, Khanz I, Ashraf M, Rashid MH, Akhtar MS (2004) Effect of salt stress on some growth attributes of sugarcane cultivars CP-77-400 and COJ-84. Int J Agric Biol 6:188–191

    Google Scholar 

  • Iskandar HM, Casu R, Fletcher A, Schmidt S, Jingsheng Xu, Maclean DJ, Manners MJ, Bonnet GD (2011) Identification of drought-response genes and a study of their expression during sucrose accumulation and water deficit in sugarcane culms. BMC Plant Biol 11:12. doi:10.1186/1471-2229-11-12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Karim S, Aronsson H, Ericson H, Pirhonen M, Leyman B, Welin B, Mantyla E, Palva ET, Van Dijck P, Holmstrom K-O (2007) Improved drought tolerance without undesired side effects in transgenic plants producing trehalose. Plant Mol Biol 64:371–386. doi:10.1007/s11103-007-9159-6

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Shriram V, Kavi-Kishor PB, Jawali N, Shitole MG (2010) Enhanced proline accumulation and salt stress tolerance of transgenic indica rice by over-expressing P5CSF129A gene. Plant Biotechnol Rep 4:37–48. doi:10.1007/s11816-009-0118-3

    Article  Google Scholar 

  • Lingle SE, Wiegand CL (1997) Soil salinity and sugarcane juice quality. Crop Res 54:259–268. doi:10.1016/S0378-4290(97)00058-0

    Article  Google Scholar 

  • Livak JK, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 −ΔΔCt method. Methods 25:402–408. doi:10.1006/2001.1262

    Article  CAS  PubMed  Google Scholar 

  • Logan BA (2005) Reactive oxygen species and photosynthesis. In: Smirnoff N (ed) Antioxidants and reactive oxygen species in plants, 10th edn. Blackwell, Oxford, pp 250–267

    Google Scholar 

  • Maggio A, Miyazaki S, Veronese P, Fujita T, Ibeas JI, Dasm B, Narasimhan ML, Hasegawa PM, Joly RJ, Bressan RA (2002) Does proline accumulation play an active role in stress-induced growth reduction? Plant J 31:699–703. doi:10.1046/1365-313X.2002.01389

    Article  CAS  PubMed  Google Scholar 

  • Maqbool SB, Christou P (1999) Multiple traits of agronomic importance in transgenic indica rice plants: analysis of transgene integration patterns, expression levels and stability. Mol Breed 5:471–480. doi:10.1023/1009634226797

    Article  Google Scholar 

  • Mattioni C, Lacerenza NG, Troccoli A, De Leonardis AM, Di Fonzo N (1997) Water and salt stress-induced alterations in proline metabolism of Triticum durum seedlings. Physiol Plant 101:787–792. doi:10.1111/1399-3054.1997.tb01064

    Article  CAS  Google Scholar 

  • Matysik J, Alia A, Bhalub B, Mohanty P (2002) Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci 82:525–532

    CAS  Google Scholar 

  • Miyazawa M, Pavan MA, Bloch MFM (1992) Chemical analysis of plant tissue, vol 74. IAPAR, Londrina, pp 7–11

  • Moghaieb REA, Tanaka N, Saneoka H, Murooka Y, Ono H, Morikawa H, Nakamura A, Nguyen NT, Suwa R, Fujita K (2006) Characterization of salt tolerance in ectoine-transformed tobacco plants (Nicotiana tabaccum): photosynthesis, osmotic adjustment, and nitrogen partitioning. Plant Cell Environ 29:173–182. doi:10.1111/1365-3040.2005.01410

    Article  CAS  PubMed  Google Scholar 

  • Molinari HBC, Marur CJ, Bespalhok JCF, Kobayashi AK, Pileggi M, Leite-Junior RP, Pereira LFP, Vieira LGE (2004) Osmotic adjustment in transgenic citrus rootstock Carrizo citrange (Citrus sinensis Osb. x Poncirus trifoliata L. Raf.) overproducing proline. Plant Sci 167:1375–1381. doi:10.1016/2004.07.007

    Article  CAS  Google Scholar 

  • Molinari HBC, Marur CJ, Daros E, Campos MKF, Carvalho JFRP, Bespalhok JCF, Pereira LFP, Vieira LGE (2007) Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.): osmotic adjustment, chlorophyll fluorescence and oxidative stress. Physiol Plant 130:218–229. doi:10.1111/1399-3054.2007.00909

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. doi:10.1146/59.032607.092911

    Article  CAS  PubMed  Google Scholar 

  • Newton A, McBeath C (1996) The impact of desiccation on chlorophyll fluorescence in detached leaves of six tropical tree species. Photosynthesis 32(4):491–501

    CAS  Google Scholar 

  • Palaniswamy N, Moshi MJ (1973) Studies on saline irrigation waters. II. Influence on soil properties. Madras Agric J 60:805–809

    Google Scholar 

  • Papini-Terzi FS, Rocha FR, Vencio RZN, Oliveira KC, Felix JM, Vicentini R, Rocha CS, Simoes ACQ, Ulian EC, di Mauro SMZ, Silva AM, Pereira CAB, Menossi M, Souza GM (2005) Transcription profiling of signal transduction-related genes in sugarcane tissues. DNA Res 12:27–38. doi:10.1093/12.1.27

    Article  CAS  PubMed  Google Scholar 

  • Parvanova D, Ivanov S, Konstantinova T, Karanov E, Atanassov A, Tsvetkov T, Alexieva V, Djilianov D (2004) Transgenic tobacco plants accumulating osmolytes show reduced oxidative damage under freezing stress. Plant Physiol Biochem 42:57–63. doi:10.1016/2003.10.007

    CAS  PubMed  Google Scholar 

  • Patade VY, Suprasanna P, Bapat VA (2008) Effects of salt stress in relation to osmotic adjustment on sugarcane (Saccharum officinarum L.) callus cultures. Plant Growth Regul 55:169–173. doi:10.1007/s10725-008-9270

    Article  CAS  Google Scholar 

  • Plaut Z, Meinzer FC, Federman E (2000) Leaf development, transpiration and ion uptake and distribution in sugarcane cultivars grown under salinity. Plant Soil 218:59–69. doi:10.1023/1014996229436

    Article  CAS  Google Scholar 

  • Prochazkova D, Sairam RK, Srivastava GC, Singh DV (2001) Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Sci 161:765–771

    Article  CAS  Google Scholar 

  • Rai M, He C, Wu R (2009) Comparative functional analysis of three abiotic stress inducible promoters in transgenic rice. Transgenic Res 18:787–799. doi:10.1007/s11248-009-9263-2

    Article  CAS  PubMed  Google Scholar 

  • Ramakers C, Ruijter JM, Deprez RH, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66. doi:10.1016/S0304-3940(02)01423-4

    Article  CAS  PubMed  Google Scholar 

  • Rasheed R, Wahid A, Farooq M, Hussain I, Basra SMA (2011) Role of proline and glycinebetaine pretreatments in improving heat tolerance of sprouting sugarcane (Saccharum sp.) buds. Plant Growth Regul 65:35–45. doi:10.1007/s10725-011-9572-3

    Article  CAS  Google Scholar 

  • Rozeff N (1995) Sugarcane and Salinity–a review paper. Sugarcane 5:8–19

    Google Scholar 

  • Shen Q, Ho THD (1995) Functional dissection of an abscisic acid (ABA)-inducible gene reveals two independent response complexes each containing a G-box and a novel cis-acting element. Plant Cell 7:295–307. doi:10.1105/7.3.295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shrivastava AK, Singh K, Ghosha AK, Darash R, Rai RK, Shunkla SP, Singh K (1989) Uptake and partitioning of sodium and chloride ions in sugarcane. Sugarcane 4:3–6

    Google Scholar 

  • Silva MA, Jifon JL, da Silva JAG, Sharma V (2007) Use of physiological parameters as fast tools to screen for drought tolerance in sugarcane. Braz J Plant Physiol 19(3):193–201. doi:10.1590/S1677-04202007000300003

    Google Scholar 

  • Su J, Wu R (2004) Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Sci 166:941–948. doi:10.1016/2003.12.004

    Article  CAS  Google Scholar 

  • Su J, Shen Q, Ho T-HD, Wu R (1998) Dehydration-stress-regulated transgene expression in stably transformed rice plants. Plant Physiol 117:913–922. doi:10.1104/117.3.913

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Su J, Hirji R, Zhang L, He C, Selvaraj G, Wu R (2006) Evaluation of the stress-inducible production of choline oxidase in transgenic rice as a strategy for producing the stress-protectant glycine betaine. J Exp Bot 57(5):1129–1135. doi:10.1093/133

    Article  CAS  PubMed  Google Scholar 

  • Taiz L, Zeiger E (2010) Plant physiology. Artmed, Porto Alegre

    Google Scholar 

  • Thomas JR, Salinas FG, Oerther GF (1981) Use of saline water for supplemental irrigation of sugarcane. J Agron 73:1011–1017

    Article  Google Scholar 

  • Vendruscolo ECG, Schuster I, Pileggi M, Scapim CA, Molinari HBC, Marur CJ, Vieira LGE (2007) Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. J Plant Physiol 164(10):1367–1376. doi:10.1016/2007.05.001

    Article  CAS  PubMed  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759. doi:10.1007/s00726-008-0061-6

    Article  CAS  PubMed  Google Scholar 

  • Wahid A, Ghazanfar A (2006) Possible involvement of some secondary metabolites in salt tolerance of sugarcane. J Plant Physiol 163:723–730. doi:10.1016/005.07.007

    Article  CAS  PubMed  Google Scholar 

  • Wahid A, Sabir H, Farooq M, Ghazanfar A, Rasheed R (2009) Role of nodal bud and sprout tissue nutrients in sprout establishment, growth and salt tolerance of sugarcane. Crop Pasteur Sci 60:453–462. doi:10.1071/08231

    Article  CAS  Google Scholar 

  • Zhang CS, Lu Q, Verma DPS (1995) Removal of feedback inhibition of Δ1-pyrroline-5-carboxylate synthetase, a bifunctional enzyme catalysing the first two steps of proline biosynthesis in plants. J Biol Chem 270:20491–20496. doi:10.1074/270.35.20491

    Article  CAS  PubMed  Google Scholar 

  • Zhu B, Su J, Chang MC, Verma DPS, Fan YL, Wu R (1998) Overexpression of a ∆1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water and salt-stress in transgenic rice. Plant Sci 139:41–48. doi:10.1016/S0168-9452(98)00175-7

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Celso J. Marur for technical help in physiological analysis. JTSG is thankful to Inter-university network development sugarcane industry—RIDESA for the scholarship and research funding. All authors also acknowledge FINEP for research funding. AAH and JTSG are recipients of a CAPES/Embrapa fellowship. LGEV acknowledge National Council for Scientific and Technological Development—CNPq for the research fellowship.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Tufino Silva Guerzoni.

Additional information

Communicated by O. Ferrarese-Filho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerzoni, J.T.S., Belintani, N.G., Moreira, R.M.P. et al. Stress-induced Δ1-pyrroline-5-carboxylate synthetase (P5CS) gene confers tolerance to salt stress in transgenic sugarcane. Acta Physiol Plant 36, 2309–2319 (2014). https://doi.org/10.1007/s11738-014-1579-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-014-1579-8

Keywords

Navigation