Skip to main content
Log in

Influence of gibberellic acid on auxin biosynthesis and their effects on coleoptile elongation in garlic

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

To demonstrate the effect of auxin on intact coleoptile growth, garlic (Allium sativum L.) cloves were inoculated in agar supplemented with DW (control), GA3 and GA3+tryptophan (a precursor of IAA, GA3+T). The coleoptiles were harvested at 24 h intervals to measure growth in terms of length, activities of IAAld DH (which convert tryptophan to IAA) and peroxidase (that oxidizes IAA). Contents of endogenous IAA and PAA were also measured by indirect ELISA. Peroxidase activity was suppressed by GA3 treatment and increased by GA3+T treatment. Although endogenous contents of IAA were increased by the addition of GA3 and even more by GA3+T in the media, there was no further increase in coleoptile length, suggesting that garlic coleoptiles are sufficient in their production of IAA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

DEAE cellulose:

Diethylaminoethyl cellulose

DMF:

Dimethyl formamide

DW:

Distilled water

EDTA:

Ethylene diamine tetra acetic acid

GA3 :

Gibberellic acid3

IAA:

Indole-3-acetic acid

IAAld DH:

Indole acetaldihyde dehydrogenase

PAA:

Phenyl acetic acid

T:

Tryptophan

References

  • Barbier-Brygoo H., Ephritikhine G., Klambt D., Guern J. 1990. The sensitivity of plant protoplast to auxin is likely modulated by the number of receptors at the plasmalemma. In: Signal Perception and Transduction in Higher Plants. Ed Ranjeva R, Boudet A., ASI Series, Plenum Press. New York, 1–12.

    Google Scholar 

  • Birecka H., Galston A.W. 1970. Peroxidase ontogeny in a dwarf pea stem as affected by gibberellin and decapitation. J. Exp. Bot. 21: 735–745.

    Article  CAS  Google Scholar 

  • Bower P.J., Brown H.M., Purves W.K. 1978. Cucumber seedling indole-acetaldehyde oxidase. Plant Physiol. 61: 107–110.

    PubMed  CAS  Google Scholar 

  • Brian P.W., Hemming H.G. 1957. A relation between the effects of gibberellic acid and indolyl acetic acid on plant cell extension. Nature 179: 417.

    Article  CAS  Google Scholar 

  • Cleland R.E. 1995. Auxin and cell elongation. In: Plant Hormones: Physiology, Biochemistry and Molecular Biology, Ed. P. J. Davies. Kluwer Academic, Dordrecht, The Natherlands, 226–246.

    Google Scholar 

  • Cohen J.D., Banduraski R.S. 1982. Chemistry and Physiology of bound auxin. Annu. Rev. Plant Physiol. 33: 403–430.

    Article  CAS  Google Scholar 

  • Collet C.E., Harberd N.P., Leyser O. 2000. Hormonal interactions in the control of Arabidopsis hypocotyls elongation. Plant Physiol. 124: 553–562.

    Article  Google Scholar 

  • Fry S.C., 1979. Phenolic components of the primary cell walls and their possible role in the hormonal regulation of growth. Planta 146: 821–827.

    Article  Google Scholar 

  • Gokani S.J., Kumar R., Thaker V.S. 1998. Potential role of abscisic acid in cotton fiber and ovule development. J. Plant Growth Regul. 17: 1–5.

    Article  CAS  Google Scholar 

  • Gokani S.J., Thaker V.S. 2002. Physiological and biochemical changes associated with cotton fiber development. IX. Role of IAA and PAA. Field Crops Res. In press.

  • Henry E.W., Valdovinous J.G., Jensen T.E. 1971. Ethylene enhanced peroxidase in abscission cells of tobacco flower pedicels. Plant Physiol. 47: 83.

    Google Scholar 

  • Jupe S.C., Scott I.M. 1992. Gibberellin and the pro gene suppress peroxidase activity in elongating tomato stem tissues. Ann. Bot. 69: 33–37.

    CAS  Google Scholar 

  • Karcz W., Stolarek J., Lekacz H., Kurtyka R., Burdach Z. 1995. Comparative investigation of auxin and fusicoccin-induced growth and H+-extrusion in coleoptile segments of Zea mays L. Acta Physiol. Plant. 17: 3–8.

    CAS  Google Scholar 

  • Kotake T., Nakagawa N., Takeda K., Sakurai N. 2000. Auxin-induced elongation growth and expression of cell wall-bound exo and endo β-glucanases in barley coleoptiles. Plant Cell Physiol. 41: 1272–1278.

    Article  PubMed  CAS  Google Scholar 

  • Kutacek M. 1985. Auxin biosynthesis and its regulation on the molecular level. Biol. Plant. 27: 145–153.

    CAS  Google Scholar 

  • Kuraishi S., Muir R.M. 1963. Diffusible auxin increase in a rosette plant treated with gibberellin. Naturwiss. 50: 337–338.

    Article  Google Scholar 

  • Law D.M. 1987. Gibberellin-enhanced indole-3-acetic acid biosynthesis; D-thryptophan as the precursor of indole-3-acetic acid. Physiol. Plant. 70: 626–632.

    Article  CAS  Google Scholar 

  • Law D.M., Hamilton R.H. 1984. Effects of gibberellic acid on endogenous levels of indole-3-acetic acid and indoleacetyl aspartic acid levels in a dwarf pea. Plant Physiol. 75: 255–256.

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto K., Kamisaka S. 1988. Stimulation of Pisum sativum epicotyl elongation by gibberellin and auxin — Different effects of two hormones on osmoregulation and cell walls. Physiol. Plant. 74: 457–466.

    Article  CAS  Google Scholar 

  • Morgan P.W., Ketring D.L., Bayer E.M. Jr., Lipa J.A. 1972. Functions of naturally produced ethylene in abscission dehiscence and seed germination. In Plant Growth Substances Ed Carr DJ Springer-Verlag, Berlin, Heidelberg, New-York, 502–509.

    Google Scholar 

  • Naithani S.C., Rama Rao N., Singh Y.D. 1982. Physiological and biochemical changes associated with cotton fiber development. I. Growth kinetics and auxin content. Physiol. Plant. 54: 225–229.

    Article  CAS  Google Scholar 

  • Pengelly W.L., Meins F. jr. 1977. A specific radioimmunoassay for nanogram quantities of the auxin indole-3-acetic acid. Planta 136: 173–180.

    Article  CAS  Google Scholar 

  • Pope D.G. 1993. Evidence for two indoleacetic acid-indiced growth responses in the Avena straight-growth indoleacetic acid assay. Plant Physiol. 102: 409–415.

    PubMed  CAS  Google Scholar 

  • Rama Rao N., Naithani S.C., Singh Y.D. 1982. Physiological and Biochemical changes associated with cotton fiber development II. Auxin oxidizing system. Physiol. Plant. 55: 204–202.

    Article  Google Scholar 

  • Rayle D.L., Cleland R.E. 1992. The Acid growth theory of auxin-induced cell elongation is alive and well. Plant Physiol. 99: 1271–1274.

    PubMed  CAS  Google Scholar 

  • Sasse F., Buchholz M., Berlin J. 1983. Selection of cell lines of Catharanthus roseus with increased tryptophan decarboxylase activity. Z Naturforsch. 38c: 916–922.

    CAS  Google Scholar 

  • Srivastava O.P., van Huystee R.B. 1977. IAA oxidase and polyphenol oxidase activities of peanut peroxidase isozymes. Phytochem. 16: 1527–1530.

    Article  CAS  Google Scholar 

  • Stonier T., Stasinos S., Murthy Reddy K.B.S. 1979. The masking of peroxidase catalyzed oxidation of IAA in Vigna. Phytochem. 18: 25–28.

    Article  CAS  Google Scholar 

  • Thaker V.S. 1998. Role of peroxidase and glycosidases in regulation of sink size in developing seeds of Hibiscus esculentum. Acta Physiol. Plant. 20: 179–182.

    Article  CAS  Google Scholar 

  • Thaker V.S., Saroop S., Singh Y.D. 1986a. Physiological and biochemical changes associated with cotton fiber development. III. Indole-3-acetaldehyde dehydrogenase. Biochem. Physiol. Pflanz. 181: 339–345.

    CAS  Google Scholar 

  • Thaker V.S., Saroop S., Singh Y.D. 1986b. Role of peroxidase and esterase activities during cotton fiber development. J. Plant Growth Regul. 5: 17–27.

    Article  CAS  Google Scholar 

  • Trewavas A.J. 1981. How do plant growth substances work? Plant Cell Environ. 4: 203–228.

    CAS  Google Scholar 

  • Tsurusaki K., Masuda Y., Sakurai N. 1997. Distribution of indole-3-acetic acid in the apoplast and symplast of squash (Cucurbita maxima) hypocotyls. Plant Cell Physiol. 38:352–356.

    CAS  Google Scholar 

  • Valdovinos J.G., Sastry K.S. 1968. The effect of gibberellin on tryptophan conversion and elongation of the Avena coleoptile. Physiol. Plant. 21: 1280–1286.

    Article  CAS  Google Scholar 

  • Weiler E.W. 1981. Radioimmunoassay for pmol quantities of indole-3- acetic acid for use with highly stable 125I and 3H-IAA derivatives as radiotracers. Planta 153: 319–325.

    Article  CAS  Google Scholar 

  • Wightman F., Lighty D.L. 1982. Identification of phenyl acetic acid as a natural auxin in the shoots of higher plants. Physiol. Plant. 55:17–24.

    Article  CAS  Google Scholar 

  • Yang T., Law D.M., Davies P.J. 1993. Magnitude and kinetics of stem elongation induced by exogenous indole-3-acetic acid in intact light-grown pea seedlings. Plant Physiol. 102: 717–724.

    PubMed  CAS  Google Scholar 

  • Yang T., Davies P.J., Reid J.B. 1996. Genetic dissection of the relative roles of auxin and gibberellin in the regulation of stem elongation in intact light-grown peas. Plant Physiol. 110: 1029–1034.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Thaker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sata, S.J., Gokani, S.J. & Thaker, V.S. Influence of gibberellic acid on auxin biosynthesis and their effects on coleoptile elongation in garlic. Acta Physiol Plant 24, 393–398 (2002). https://doi.org/10.1007/s11738-002-0035-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-002-0035-3

Key words

Navigation