Skip to main content
Log in

Copper(II) sulfide nanostructures and its nanohybrids: recent trends, future perspectives and current challenges

  • Review Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Among various metal chalcogenides, metal oxides and phases of copper sulfide, copper(II) sulfide (covellite, CuS) nanostructures have enjoyed special attentiveness from researchers and scientists across the world owing to their complicated structure, peculiar composition and valency, attractive and panoramic morphologies, optical and electrical conductivity, less toxicity, and biocompatibility that can be exploited in advanced and technological applications. This review paper presents a brief idea about crystal structure, composition, and various chemical methods. The mechanism and effect of reaction parameters on the evolution of versatile and attractive morphologies have been described. Physical properties of CuS and its hybrid nanostructures, such as morphology and optical, mechanical, electrical, thermal, and thermoelectrical properties, have been carefully reviewed. A concise account of CuS and its hybrid nanostructures’ diverse applications in emerging and recent applications such as energy storage devices (lithium-ion batteries, supercapacitance), sensors, field emission, photovoltaic cells, organic pollutant removal, electromagnetic wave absorption, and emerging biomedical field (drug delivery, photothermal ablation, deoxyribonucleic acid detection, anti-microbial and theranostic) has also been elucidated. Finally, the prospects, scope, and challenges of CuS nanostructures have been discussed precisely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iqbal S, Shaid N A, Sajid M M, et al. Extensive evaluation of changes in structural, chemical and thermal properties of copper sulfide nanoparticles at different calcination temperature. Journal of Crystal Growth, 2020, 547: 125823

    Article  CAS  Google Scholar 

  2. Zhai Y, Shim M. Effects of copper precursor reactivity on the shape and phase of copper sulfide nanocrystals. Chemistry of Materials, 2017, 29(5): 2390–2397

    Article  CAS  Google Scholar 

  3. Loudhaief N, Ben Salem M, Labiadh H, et al. Electrical properties and fluctuation induced conductivity studies of Bi-based superconductors added by CuS nanoparticles synthesized through the aqueous route. Materials Chemistry and Physics, 2020, 242: 122464

    Article  CAS  Google Scholar 

  4. Arora S, Kabra K, Joshi K, et al. Structural, elastic, thermodynamic and electronic properties of covellite, CuS. Physica B: Condensed Matter, 2020, 582: 311142

    Article  CAS  Google Scholar 

  5. Raj S I, Jaiswal A, Uddin I. Ultrasmall aqueous starch-capped CuS quantum dots with tunable localized surface plasmon resonance and composition for the selective and sensitive detection of mercury(ii) ions. RSC Advances, 2020, 10(24): 14050–14059

    Article  CAS  Google Scholar 

  6. Liu Y, Liu M, Swihart M T. Plasmonic copper sulfide-based materials: a brief introduction to their synthesis, doping, alloying, and applications. The Journal of Physical Chemistry C, 2017, 121(25): 13435–13447

    Article  CAS  Google Scholar 

  7. AL-Jawad S M H, Taha A A, Redha A M, et al. Studying the structural, morphological, and optical properties of CuS:Ni nanostructure prepared by a hydrothermal method for biological activity. Journal of Sol-Gel Science and Technology, 2019, 91(2): 310–323

    Article  CAS  Google Scholar 

  8. Feng C, Zhang L, Wang Z, et al. Synthesis of copper sulfide nanowire bundles in a mixed solvent as a cathode material for lithium-ion batteries. Journal of Power Sources, 2014, 269: 550–555

    Article  CAS  Google Scholar 

  9. Córdova-Castro R M, Casavola M, van Schilfgaarde M, et al. Anisotropic plasmonic CuS nanocrystals as a natural electronic material with hyperbolic optical dispersion. ACS Nano, 2019, 13(6): 6550–6560

    Article  Google Scholar 

  10. Tao F, Zhang Y, Cao S, et al. CuS nanoflowers/semipermeable collodion membrane composite for high-efficiency solar vapor generation. Materials Today Energy, 2018, 9: 285–294

    Article  Google Scholar 

  11. Kalanur S S, Seo H. Tuning plasmonic properties of CuS thin films via valence band filling. RSC Advances, 2017, 7(18): 11118–11122

    Article  CAS  Google Scholar 

  12. Ghosh K, Srivastava S K. Enhanced supercapacitor performance and electromagnetic interference shielding effectiveness of CuS quantum dots grown on reduced graphene oxide sheets. ACS Omega, 2021, 6(7): 4582–4596

    Article  CAS  Google Scholar 

  13. Adedeji M A, Hamed M S, Mola G T. Light trapping using copper decorated nano-composite in the hole transport layer of organic solar cell. Solar Energy, 2020, 203: 83–90

    Article  CAS  Google Scholar 

  14. Bano Z, Saeed R M Y, Zhu S, et al. Mesoporous CuS nanospheres decorated rGO aerogel for high photocatalytic activity towards Cr(VI) and organic pollutants. Chemosphere, 2020, 246: 125846

    Article  CAS  Google Scholar 

  15. Venkadesh A, Mathiyarasu J, Radhakrishnan S. Electrochemical enzyme-free sensing of oxalic acid using amine mediated synthesis of CuS nanosphere. Analytical Sciences, 2021, 37(7): 949–954

    Article  CAS  Google Scholar 

  16. Shalabayev Z, Baláz M, Daneu N, et al. Sulfur-mediated mechanochemical synthesis of spherical and needle-like copper sulfide nanocrystals with antibacterial activity. ACS Sustainable Chemistry & Engineering, 2019, 7(15): 12897–12909

    Article  CAS  Google Scholar 

  17. Rani B J, Ravi G, Yuvakkumar R, et al. Investigation on copper based oxide, sulfide and selenide derivatives oxygen evolution reaction activity. Applied Nanoscience, 2020, 10(11): 4299–4306

    Article  CAS  Google Scholar 

  18. Ramamoorthy C, Rajendran V. Synthesis and characterization of CuS nanostructures: structural, optical, electrochemical and photocatalytic activity by the hydro/solvothermal process. International Journal of Hydrogen Energy, 2017, 42(42): 26454–26463

    Article  CAS  Google Scholar 

  19. Srinidhi G, Sudalaimani S, Giribabu K, et al. Amperometric determination of hydrazine using a CuS-ordered mesoporous carbon electrode. Microchimica Acta, 2020, 187(6): 359

    Article  CAS  Google Scholar 

  20. Singh N, Taunk M. Structural, optical, and electrical studies of sonochemically synthesized CuS nanoparticles. Semiconductors, 2020, 54(9): 1016–1022

    Article  CAS  Google Scholar 

  21. Saranya M, Santhosh C, Augustine S P, et al. Synthesis and characterisation of CuS nanomaterials using hydrothermal route. Journal of Experimental Nanoscience, 2014, 9(4): 329–336

    Article  CAS  Google Scholar 

  22. Pal M, Mathews N R, Sanchez-Mora E, et al. Synthesis of CuS nanoparticles by a wet chemical route and their photocatalytic activity. Journal of Nanoparticle Research, 2015, 17(7): 301

    Article  Google Scholar 

  23. Portillo M C, Gutiérrez R V, Ramírez M A M, et al. Structural properties of sulfur copper (CuS) nanocrystals grown by chemical bath deposition. Optik, 2020, 208: 164518

    Article  Google Scholar 

  24. Ayodhya D, Veerabhadram G. Facile fabrication, characterization and efficient photocatalytic activity of surfactant free ZnS, CdS and CuS nanoparticles. Journal of Science. Advanced Materials and Devices, 2019, 4(3): 381–391

    Article  Google Scholar 

  25. Radhakrishnan S, Kim H Y, Kim B S. A novel CuS microflower superstructure based sensitive and selective nonenzymatic glucose detection. Sensors and Actuators B: Chemical, 2016, 233: 93–99

    Article  CAS  Google Scholar 

  26. Nekouei F, Nekouei S, Jashnsaz O, et al. Green approach for in-situ growth of highly-ordered 3D flower-like CuS hollow nanospheres decorated on nitrogen and sulfur co-doped graphene bionanocomposite with enhanced peroxidase-like catalytic activity performance for colorimetric biosensing of glucose. Materials Science and Engineering C, 2018, 90: 576–588

    Article  CAS  Google Scholar 

  27. Zhu J, Peng X, Nie W, et al. Hollow copper sulfide nanocubes as multifunctional nanozymes for colorimetric detection of dopamine and electrochemical detection of glucose. Biosensors & Bioelectronics, 2019, 141: 111450

    Article  CAS  Google Scholar 

  28. Zhai S, Jin K, Zhou M, et al. A novel high performance flexible supercapacitor based on porous carbonized cotton/ZnO nanoparticle/CuS micro-sphere. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 584: 124025

    Article  CAS  Google Scholar 

  29. Shalabayev Z, Balaz M, Daneu N, et al. Sulfur-mediated mechanochemical synthesis of spherical and needle-like copper sulfide nanocrystals with antibacterial activity. ACS Sustainable Chemistry & Engineering, 2019, 7(15): 12897–12909

    Article  CAS  Google Scholar 

  30. Hsu S W, Ngo C, Bryks W, et al. Shape focusing during the anisotropic growth of CuS triangular nanoprisms. Chemistry of Materials, 2015, 27(14): 4957–4963

    Article  CAS  Google Scholar 

  31. Huang J, Zhou J, Zhuang J, et al. Strong near-infrared absorbing and biocompatible CuS nanoparticles for rapid and efficient photothermal ablation of Gram-positive and -negative bacteria. ACS Applied Materials & Interfaces, 2017, 9(42): 36606–36614

    Article  CAS  Google Scholar 

  32. Wang Y, Jiang F, Chen J, et al. In situ construction of CNT/CuS hybrids and their application in photodegradation for removing organic dyes. Nanomaterials, 2020, 10(1): 178

    Article  Google Scholar 

  33. Yao K, Zhao C, Sun N, et al. Freestanding CuS nanowalls: ionic liquid-assisted synthesis and prominent catalytic performance for the decomposition of ammonium perchlorate. CrystEngComm, 2017, 19(34): 5048–5057

    Article  CAS  Google Scholar 

  34. Nath S K, Kalita P. Temperature dependent structural, optical and electrical properties of CuS nanorods in aloe vera matrix. Nano-Structures & Nano-Objects, 2021, 25: 100651

    Article  CAS  Google Scholar 

  35. Shuai X, Shen W, Li X, et al. Cation exchange synthesis of CuS nanotubes composed of nanoparticles as low-cost counter electrodes for dye-sensitized solar cells. Materials Science and Engineering B, 2018, 227: 74–79

    Article  CAS  Google Scholar 

  36. Qin Y, Kong X, Lei D, et al. Facial grinding method for synthesis of high-purity CuS nanosheets. Industrial & Engineering Chemistry Research, 2018, 57(8): 2759–2764

    Article  CAS  Google Scholar 

  37. Gao P, Zhang Y, Abedi H. Hierarchical CuS doped with vanadium nanosheets with micro skein overall morphology as a high performance amperometric glucose sensor. Surfaces and Interfaces, 2020, 21: 100756

    Article  CAS  Google Scholar 

  38. Mezgebe M M, Ju A, Wei G, et al. Structure based optical properties and catalytic activities of hydrothermally prepared CuS nanostructures. Nanotechnology, 2019, 30(10): 105704

    Article  CAS  Google Scholar 

  39. Venkadesh A, Radhakrishnan S, Mathiyarasu J. Eco-friendly synthesis and morphology-dependent superior electrocatalytic properties of CuS nanostructures. Electrochimica Acta, 2017, 246: 544–552

    Article  CAS  Google Scholar 

  40. Iqbal S, Bahadur A, Anwer S, et al. Shape and phase-controlled synthesis of specially designed 2D morphologies of L-cysteine surface capped covellite (CuS) and chalcocite (Cu2S) with excellent photocatalytic properties in the visible spectrum. Applied Surface Science, 2020, 526: 146691

    Article  CAS  Google Scholar 

  41. Li S, Zhang H, Xu L, et al. Laser-induced construction of multi-branched CuS nanodendrites with excellent surface-enhanced Raman scattering spectroscopy in repeated applications. Optics Express, 2017, 25(14): 16204–16213

    Article  CAS  Google Scholar 

  42. Shawky A, El-Sheikh S, Gaber A, et al. Urchin-like CuS nanostructures: simple synthesis and structural optimization with enhanced photocatalytic activity under direct sunlight. Applied Nanoscience, 2020, 10(7): 2153–2164

    Article  CAS  Google Scholar 

  43. Shi B, Liu W, Zhu K, et al. Synthesis of flower-like copper sulfides microspheres as electrode materials for sodium secondary batteries. Chemical Physics Letters, 2017, 677: 70–74

    Article  CAS  Google Scholar 

  44. Hosseinpour Z, Scarpellini A, Najafishirtari S, et al. Morphology-dependent electrochemical properties of CuS hierarchical superstructures. ChemPhysChem, 2015, 16(16): 3418–3424

    Article  CAS  Google Scholar 

  45. Jeevanandam J, Barhoum A, Chan Y S, et al. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein Journal of Nanotechnology, 2018, 9: 1050–1074

    Article  CAS  Google Scholar 

  46. Hong N H. Introduction to nanomaterials: basic properties, synthesis, and characterization. In: Nano-Sized Multifunctional Materials: Synthesis, Properties and Applications. Elsevier, 2019, 1–19

  47. Son M Y, Choi J H, Kang Y C. Electrochemical properties of bare nickel sulfide and nickel sulfide–carbon composites prepared by one-pot spray pyrolysis as anode materials for lithium secondary batteries. Journal of Power Sources, 2014, 251: 480–487

    Article  CAS  Google Scholar 

  48. Sun Y, Yu Z, Chen Z, et al. One-dimensional channel to trigger high-performance sodium-ion battery via doping engineering. Nano Energy, 2021, 84: 105875

    Article  CAS  Google Scholar 

  49. Gu T H, Kwon N H, Lee K G, et al. 2D inorganic nanosheets as versatile building blocks for hybrid electrode materials for supercapacitor. Coordination Chemistry Reviews, 2020, 421: 213439

    Article  CAS  Google Scholar 

  50. Dong R, Zhang T, Feng X. Interface-assisted synthesis of 2D materials: trend and challenges. Chemical Reviews, 2018, 118(13): 6189–6235

    Article  CAS  Google Scholar 

  51. Naveed M, Younas W, Zhu Y, et al. Template free and facile microwave-assisted synthesis method to prepare mesoporous copper sulfide nanosheets for high-performance hybrid supercapacitor. Electrochimica Acta, 2019, 319: 49–60

    Article  CAS  Google Scholar 

  52. Masar M, Urbanek M, Urbanek P, et al. Synthesis, characterization and examination of photocatalytic performance of hexagonal covellite CuS nanoplates. Materials Chemistry and Physics, 2019, 237: 121823

    Article  CAS  Google Scholar 

  53. Dou T, Qin Y, Zhang F, et al. CuS nanosheet arrays for electrochemical CO2 reduction with surface reconstruction and the effect on selective formation of formate. ACS Applied Energy Materials, 2021, 4(5): 4376–4384

    Article  CAS  Google Scholar 

  54. Ying Z, Zhao S, Yue J, et al. 3D hierarchical CuS microflowers constructed on copper powders-filled nickel foam as advanced binder-free electrodes. Journal of Alloys and Compounds, 2020, 821: 153437

    Article  CAS  Google Scholar 

  55. Wang Z, Zhang X, Zhang Y, et al. Chemical dealloying synthesis of CuS nanowire-on-nanoplate network as anode materials for Li-ion batteries. Metals, 2018, 8(4): 252

    Article  Google Scholar 

  56. Ding X, Lei S, Du C, et al. Small-sized CuS nanoparticles/N, S co-doped rGO composites as the anode materials for high-performance lithium-ion batteries. Advanced Materials Interfaces, 2019, 6(6): 1900038

    Article  Google Scholar 

  57. Hosseinpour Z, Arefinia Z, Hosseinpour S. Morphology and phase control of hierarchical copper sulfide superstructures as efficient catalyst. Materials Science in Semiconductor Processing, 2019, 100: 48–55

    Article  CAS  Google Scholar 

  58. Qin N, Wei W, Huang C, et al. An efficient strategy for the fabrication of CuS as a highly excellent and recyclable photocatalyst for the degradation of organic dyes. Catalysts, 2020, 10(1): 40

    Article  CAS  Google Scholar 

  59. Raj S I, Jaiswal A. Nanoscale transformation in CuS Fenton-like catalyst for highly selective and enhanced dye degradation. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 410: 113158

    Article  CAS  Google Scholar 

  60. Zhao Y, Zuo Y, He G, et al. Synthesis of graphene-based CdS@CuS core–shell nanorods by cation-exchange for efficient degradation of ciprofloxacin. Journal of Alloys and Compounds, 2021, 869: 159305

    Article  CAS  Google Scholar 

  61. Zhao B, Shao G, Fan B, et al. Synthesis of flower-like CuS hollow microspheres based on nanoflakes self-assembly and their microwave absorption properties. Journal of Materials Chemistry A, 2015, 3(19): 10345–10352

    Article  CAS  Google Scholar 

  62. Zhang D, Cai Y, Liang Q, et al. Scalable, flexible, durable, and salt-tolerant CuS/bacterial cellulose gel membranes for efficient interfacial solar evaporation. ACS Sustainable Chemistry & Engineering, 2020, 8(24): 9017–9026

    Article  CAS  Google Scholar 

  63. Li J, Liu M, Jiang J, et al. Morphology-controlled electrochemical sensing properties of CuS crystals for tartrazine and sunset yellow. Sensors and Actuators B: Chemical, 2019, 288: 552–563

    Article  CAS  Google Scholar 

  64. Li C, He P, Jia L, et al. Facile synthesis of 3D CuS micro-flowers grown on porous activated carbon derived from pomelo peel as electrode for high-performance supercapacitors. Electrochimica Acta, 2019, 299: 253–261

    Article  CAS  Google Scholar 

  65. Zhai S, Jin K, Zhou M, et al. In-situ growth of flower-like CuS microsphere on carbonized cotton for high-performance flexible supercapacitor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 575: 75–83

    Article  CAS  Google Scholar 

  66. El-Hout S I, Mohamed S G, Gaber A, et al. High electrochemical performance of rGO anchored CuS nanospheres for supercapacitor applications. Journal of Energy Storage, 2021, 34: 102001

    Article  Google Scholar 

  67. Sabeeh H, Aadil M, Zulfiqar S, et al. Hydrothermal synthesis of CuS nanochips and their nanohybrids with CNTs for electrochemical energy storage applications. Ceramics International, 2021, 47(10): 13613–13621

    Article  CAS  Google Scholar 

  68. Muhyuddin M, Ahsan M T, Ali I, et al. A new insight into solar paint concept: regeneration of CuS nanoparticles for paintable counter electrodes in QDSSCs. Applied Physics A: Materials Science & Processing, 2019, 125(10): 716

    Article  Google Scholar 

  69. Tian Z, Qi Z, Yang Y, et al. Anchoring CuS nanoparticles on accordion-like Ti3C2 as high electrocatalytic activity counter electrodes for QDSSCs. Inorganic Chemistry Frontiers, 2020, 7(19): 3727–3734

    Article  CAS  Google Scholar 

  70. Neelgund G M, Oki A, Bandara S, et al. Photothermal effect and cytotoxicity of CuS nanoflowers deposited over folic acid conjugated nanographene oxide. Journal of Materials Chemistry B, 2021, 9(7): 1792–1803

    Article  CAS  Google Scholar 

  71. Nikam A N, Pandey A, Fernandes G, et al. Copper sulphide based heterogeneous nanoplatforms for multimodal therapy and imaging of cancer: recent advances and toxicological perspectives. Coordination Chemistry Reviews, 2020, 419: 213356

    Article  CAS  Google Scholar 

  72. Christy R S, Kumaran J T. Phase transition in CuS nanoparticles. Journal of Non-Oxide Glasses, 2014, 6: 13–22

    Google Scholar 

  73. Tarachand, Hussain S, Lalla N P, et al. Thermoelectric properties of Ag-doped CuS nanocomposites synthesized by a facile polyol method. Physical Chemistry Chemical Physics, 2018, 20(8): 5926–5935

    Article  CAS  Google Scholar 

  74. Rosso K M, Hochella M. A UHV STM/STS and ab initio investigation of covellite {0 0 1} surfaces. Surface Science, 1999, 423(2–3): 364–374

    Article  CAS  Google Scholar 

  75. Wang K J, Li G D, Li J X, et al. Formation of single-crystalline CuS nanoplates vertically standing on flat substrate. Crystal Growth & Design, 2007, 7(11): 2265–2267

    Article  CAS  Google Scholar 

  76. Soares A L, Dos Santos E C, Morales-García A, et al. The stability and structural, electronic and topological properties of covellite (0 0 1) surfaces. ChemistrySelect, 2016, 1(11): 2730–2741

    Article  CAS  Google Scholar 

  77. Gaspari R, Manna L, Cavalli A. A theoretical investigation of the (0 0 0 1) covellite surfaces. The Journal of Chemical Physics, 2014, 141(4): 044702

    Article  Google Scholar 

  78. Morales-García A, Soares A L Jr, Dos Santos E C, et al. First-principles calculations and electron density topological analysis of covellite (CuS). The Journal of Physical Chemistry A, 2014, 118(31): 5823–5831

    Article  Google Scholar 

  79. Li J, Jiu T, Tao G H, et al. Manipulating surface ligands of copper sulfide nanocrystals: synthesis, characterization, and application to organic solar cells. Journal of Colloid and Interface Science, 2014, 419: 142–147

    Article  CAS  Google Scholar 

  80. Pejjai B, Reddivari M, Kotte T R R. Phase controllable synthesis of CuS nanoparticles by chemical co-precipitation method: effect of copper precursors on the properties of CuS. Materials Chemistry and Physics, 2020, 239: 122030

    Article  CAS  Google Scholar 

  81. Ayodhya D, Venkatesham M, Santoshi Kumari A, et al. Photocatalytic degradation of dye pollutants under solar, visible and UV lights using green synthesised CuS nanoparticles. Journal of Experimental Nanoscience, 2016, 11(6): 418–432

    Article  CAS  Google Scholar 

  82. Liang H, Shuang W, Zhang Y, et al. Graphene-like multilayered CuS nanosheets assembled into flower-like microspheres and their electrocatalytic oxygen evolution properties. ChemElectroChem, 2018, 5(3): 494–500

    Article  CAS  Google Scholar 

  83. Ayodhya D, Veerabhadram G. Preparation, characterization, photocatalytic, sensing and antimicrobial studies of Calotropis gigantea leaf extract capped CuS NPs by a green approach. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27(S1): 215–230

    Article  CAS  Google Scholar 

  84. Huerta-Flores A M, Torres-Martínez L M, Moctezuma E, et al. Green synthesis of earth-abundant metal sulfides (FeS2, CuS, and NiS2) and their use as visible-light active photocatalysts for H2 generation and dye removal. Journal of Materials Science: Materials in Electronics, 2018, 29(13): 11613–11626

    CAS  Google Scholar 

  85. Ramalingam G, Vignesh R, Ragupathi C, et al. Electrical and chemical stability of CuS nanofluids for conductivity of water soluble based nanocomposites. Surfaces and Interfaces, 2020, 19: 100475

    Article  CAS  Google Scholar 

  86. Manjunatha C, Krishna R H, Ashoka S. Green synthesis of inorganic nanoparticles using microemulsion methods. In: Green Sustainable Process for Chemical and Environmental Engineering and Science. Elsevier, 2021, 41–67

  87. Yang Z, Zhang S, Zheng X, et al. Controllable synthesis of copper sulfide for nonenzymatic hydrazine sensing. Sensors and Actuators B: Chemical, 2018, 255: 2643–2651

    Article  CAS  Google Scholar 

  88. Saranya M, Santhosh C, Ramachandran R, et al. Hydrothermal growth of CuS nanostructures and its photocatalytic properties. Powder Technology, 2014, 252: 25–32

    Article  CAS  Google Scholar 

  89. Yadav S, Bajpai P. Synthesis of copper sulfide nanoparticles: pH dependent phase stabilization. Nano-Structures & Nano-Objects, 2017, 10: 151–158

    Article  CAS  Google Scholar 

  90. Zeinodin R, Jamali-Sheini F. In-doped CuS nanostructures: ultrasonic synthesis, physical properties, and enhanced photocatalytic behavior. Physica B: Condensed Matter, 2019, 570: 148–156

    Article  CAS  Google Scholar 

  91. Mu C F, Yao Q Z, Qu X F, et al. Controlled synthesis of various hierarchical nanostructures of copper sulfide by a facile microwave irradiation method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 371(1–3): 14–21

    Article  CAS  Google Scholar 

  92. Siqueira G O, Matencio T, da Silva H V, et al. Temperature and time dependence on ZnS microstructure and phases obtained through hydrothermal decomposition of diethyldithiocarbamate complexes. Physical Chemistry Chemical Physics, 2013, 15(18): 6796–6803

    Article  CAS  Google Scholar 

  93. Krishnamoorthy K, Veerasubramani G K, Kim S J. Hydrothermal synthesis, characterization and electrochemical properties of cobalt sulfide nanoparticles. Materials Science in Semiconductor Processing, 2015, 40: 781–786

    Article  CAS  Google Scholar 

  94. Fereshteh Z, Salavati-Niasari M. Effect of ligand on particle size and morphology of nanostructures synthesized by thermal decomposition of coordination compounds. Advances in Colloid and Interface Science, 2017, 243: 86–104

    Article  CAS  Google Scholar 

  95. Yoshimura M. Importance of soft solution processing for advanced inorganic materials. Journal of Materials Research, 1998, 13(4): 796–802

    Article  CAS  Google Scholar 

  96. Yang S, Zavalij P Y, Whittingham M S. Hydrothermal synthesis of lithium iron phosphate cathodes. Electrochemistry Communications, 2001, 3(9): 505–508

    Article  CAS  Google Scholar 

  97. Li F, Wu J, Qin Q, et al. Controllable synthesis, optical and photocatalytic properties of CuS nanomaterials with hierarchical structures. Powder Technology, 2010, 198(2): 267–274

    Article  CAS  Google Scholar 

  98. Cheng Z, Wang S, Si D, et al. Controlled synthesis of copper sulfide 3D nanoarchitectures through a facile hydrothermal route. Journal of Alloys and Compounds, 2010, 492(1–2): L44–L49

    Article  CAS  Google Scholar 

  99. Thongtem T, Pilapong C, Thongtem S. Large-scale synthesis of CuS hexaplates in mixed solvents using a solvothermal method. Materials Letters, 2010, 64(2): 111–114

    Article  CAS  Google Scholar 

  100. Rajendran V, Gajendiran J. Nonionic surfactant poly (ethane 1, 2-diol)-400 assisted solvothermal synthesis of copper monosulfide (CuS) nanoplates and their structural, topographical, optical and luminescent properties. Materials Science in Semiconductor Processing, 2015, 36: 92–95

    Article  CAS  Google Scholar 

  101. Shahi S, Saeednia S, Iranmanesh P, et al. Influence of synthesis parameters on the optical and photocatalytic properties of solvo/hydrothermal CuS and ZnS nanoparticles. Luminescence, 2021, 36(1): 180–191

    Article  CAS  Google Scholar 

  102. Dheyab M A, Aziz A A, Khaniabadi P M, et al. Distinct advantages of using sonochemical over laser ablation methods for a rapid-high quality gold nanoparticles production. Materials Research Express, 2021, 8(1): 015009

    Article  CAS  Google Scholar 

  103. Asgharzadehahmadi S, Raman A A A, Parthasarathy R, et al. Sonochemical reactors: review on features, advantages and limitations. Renewable & Sustainable Energy Reviews, 2016, 63: 302–314

    Article  CAS  Google Scholar 

  104. Suslick K S, Choe S-B, Cichowlas A A, et al. Sonochemical synthesis of amorphous iron. Nature, 1991, 353: 414–416

    Article  CAS  Google Scholar 

  105. Kristl M, Hojnik N, Gyergyek S, et al. Sonochemical preparation of copper sulfides with different phases in aqueous solutions. Materials Research Bulletin, 2013, 48(3): 1184–1188

    Article  CAS  Google Scholar 

  106. Phuruangrat A, Thongtem T, Thongtem S. Characterization of copper sulfide hexananoplates, and nanoparticles synthesized by a sonochemical method. Chalcogenide Letters, 2011, 8: 291–295

    CAS  Google Scholar 

  107. Deng C, Ge X, Hu H, et al. Template-free and green sonochemical synthesis of hierarchically structured CuS hollow microspheres displaying excellent Fenton-like catalytic activities. CrystEngComm, 2014, 16(13): 2738–2745

    Article  CAS  Google Scholar 

  108. Esposito S. “Traditional” sol–gel chemistry as a powerful tool for the preparation of supported metal and metal oxide catalysts. Materials, 2019, 12(4): 668

    Article  CAS  Google Scholar 

  109. Parashar M, Shukla V K, Singh R. Metal oxides nanoparticles via sol–gel method: a review on synthesis, characterization and applications. Journal of Materials Science: Materials in Electronics, 2020, 31(5): 3729–3749

    CAS  Google Scholar 

  110. Riyaz S, Parveen A, Azam A. Microstructural and optical properties of CuS nanoparticles prepared by sol–gel route. Perspectives in Science, 2016, 8: 632–635

    Article  Google Scholar 

  111. Ha J, Oh J, Choi H, et al. Photoelectrochemical properties of Ni-doped CuO nanorods grown using the modified chemical bath deposition method. Journal of Industrial and Engineering Chemistry, 2018, 58: 38–44

    Article  CAS  Google Scholar 

  112. Patil A, Lokhande A, Chodankar N, et al. Interior design engineering of CuS architecture alteration with rise in reaction bath temperature for high performance symmetric flexible solid state supercapacitor. Journal of Industrial and Engineering Chemistry, 2017, 46: 91–102

    Article  CAS  Google Scholar 

  113. Durga I K, Rao S S, Reddy A E, et al. Achieving copper sulfide leaf like nanostructure electrode for high performance supercapacitor and quantum-dot sensitized solar cells. Applied Surface Science, 2018, 435: 666–675

    Article  CAS  Google Scholar 

  114. Zhu Y J, Chen F. Microwave-assisted preparation of inorganic nanostructures in liquid phase. Chemical Reviews, 2014, 114(12): 6462–6555

    Article  CAS  Google Scholar 

  115. Thongtem T, Phuruangrat A, Thongtem S. Characterization of copper sulfide nanostructured spheres and nanotubes synthesized by microwave-assisted solvothermal method. Materials Letters, 2010, 64(2): 136–139

    Article  CAS  Google Scholar 

  116. Nafees M, Ali S, Idrees S, et al. A simple microwave assists aqueous route to synthesis CuS nanoparticles and further aggregation to spherical shape. Applied Nanoscience, 2013, 3(2): 119–124

    Article  CAS  Google Scholar 

  117. Hu H, Wang J, Deng C, et al. Microwave-assisted controllable synthesis of hierarchical CuS nanospheres displaying fast and efficient photocatalytic activities. Journal of Materials Science, 2018, 53(20): 14250–14261

    Article  CAS  Google Scholar 

  118. Pirogov A, Shpigun O. Application of microemulsions in liquid chromatography and electrokinetic methods of analysis: advantages and disadvantages of the approach. Journal of Analytical Chemistry, 2020, 75(2): 139–147

    Article  CAS  Google Scholar 

  119. López-Quintela M A. Synthesis of nanomaterials in microemulsions: formation mechanisms and growth control. Current Opinion in Colloid & Interface Science, 2003, 8(2): 137–144

    Article  Google Scholar 

  120. Li W, Xu P, Zhou H, et al. Advanced functional nanomaterials with microemulsion phase. Science China: Technological Sciences, 2012, 55(2): 387–416

    Article  Google Scholar 

  121. Jiang D, Hu W, Wang H, et al. Microemulsion template synthesis of copper sulfide hollow spheres at room temperature. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 384(1–3): 228–232

    Article  CAS  Google Scholar 

  122. Iqbal S, Bahadur A, Anwer S, et al. Designing novel morphologies of L-cysteine surface capped 2D covellite (CuS) nanoplates to study the effect of CuS morphologies on dye degradation rate under visible light. CrystEngComm, 2020, 22(24): 4162–4173

    Article  CAS  Google Scholar 

  123. Kalimuldina G, Nurpeissova A, Adylkhanova A, et al. Morphology and dimension variations of copper sulfide for high-performance electrode in rechargeable batteries: a review. ACS Applied Energy Materials, 2020, 3(12): 11480–11499

    Article  CAS  Google Scholar 

  124. Chaudhary G R, Bansal P, Mehta S. Recyclable CuS quantum dots as heterogeneous catalyst for Biginelli reaction under solvent free conditions. Chemical Engineering Journal, 2014, 243: 217–224

    Article  CAS  Google Scholar 

  125. Mary K A, Unnikrishnan N, Philip R. Role of surface states and defects in the ultrafast nonlinear optical properties of CuS quantum dots. APL Materials, 2014, 2(7): 076104

    Article  Google Scholar 

  126. Li S, Ge Z H, Zhang B P, et al. Mechanochemically synthesized sub-5 nm sized CuS quantum dots with high visible-light-driven photocatalytic activity. Applied Surface Science, 2016, 384: 272–278

    Article  CAS  Google Scholar 

  127. Bansal P, Chaudhary G R, Kaur N, et al. An efficient and green synthesis of xanthene derivatives using CuS quantum dots as a heterogeneous and reusable catalyst under solvent free conditions. RSC Advances, 2015, 5(11): 8205–8209

    Article  CAS  Google Scholar 

  128. Wen Y X, Qing M, Chen S L, et al. Y-type DNA structure stabilized p-type CuS quantum dots to quench photocurrent of ternary heterostructure for sensitive photoelectrochemical detection of miRNA. Sensors and Actuators B: Chemical, 2021, 329: 129257

    Article  CAS  Google Scholar 

  129. Li X, He X, Shi C, et al. Synthesis of one-dimensional copper sulfide nanorods as high-performance anode in lithium ion batteries. ChemSusChem, 2014, 7(12): 3328–3333

    Article  CAS  Google Scholar 

  130. Huang J, Wang Y, Gu C, et al. Large scale synthesis of uniform CuS nanotubes by a sacrificial templating method and their application as an efficient photocatalyst. Materials Letters, 2013, 99: 31–34

    Article  CAS  Google Scholar 

  131. Pal D, Singh G, Goswami Y C, et al. Synthesis of randomly oriented self assembled CuS nanorods by co-precipitation route. Journal of Materials Science: Materials in Electronics, 2019, 30(16): 15700–15704

    Google Scholar 

  132. Darouie M, Afshar S, Zare K, et al. Investigation of different factors towards synthesis of CuS spherical nanoparticles. Journal of Experimental Nanoscience, 2013, 8(4): 451–461

    Article  CAS  Google Scholar 

  133. Radhakrishnan S, Kim H Y, Kim B S. Expeditious and eco-friendly fabrication of highly uniform microflower superstructures and their applications in highly durable methanol oxidation and high-performance supercapacitors. Journal of Materials Chemistry A, 2016, 4(31): 12253–12262

    Article  CAS  Google Scholar 

  134. Zou J, Jiang J, Huang L, et al. Synthesis, characterization and electrocatalytic activity of copper sulfide nanocrystals with different morphologies. Solid State Sciences, 2011, 13(6): 1261–1267

    Article  CAS  Google Scholar 

  135. Fang J, Zhang P, Chang H, et al. Hydrothermal synthesis of nanostructured CuS for broadband efficient optical absorption and high-performance photo-thermal conversion. Solar Energy Materials and Solar Cells, 2018, 185: 456–463

    Article  CAS  Google Scholar 

  136. Li S, Zhang Z, Yan L, et al. Fast synthesis of CuS and Cu9S5 microcrystal using subcritical and supercritical methanol and their application in photocatalytic degradation of dye in water. Journal of Supercritical Fluids, 2017, 123: 11–17

    Article  CAS  Google Scholar 

  137. Singhal R, Thorne D, LeMaire P K, et al. Synthesis and characterization of CuS, CuS/graphene oxide nanocomposite for supercapacitor applications. AIP Advances, 2020, 10(3): 035307

    Article  CAS  Google Scholar 

  138. Camargo P H, Rodrigues T S, da Silva A G, et al. Controlled synthesis: nucleation and growth in solution. In: Metallic Nanostructures. Springer, 2015, 49–74

  139. Yang Z, Wu Z, Liu J, et al. Platelet-like CuS impregnated with twin crystal structures for high performance sodium-ion storage. Journal of Materials Chemistry A, 2020, 8(16): 8049–8057

    Article  CAS  Google Scholar 

  140. Saranya M, Ramachandran R, Samuel E J J, et al. Enhanced visible light photocatalytic reduction of organic pollutant and electrochemical properties of CuS catalyst. Powder Technology, 2015, 279: 209–220

    Article  CAS  Google Scholar 

  141. Saranya M, Grace A N. Hydrothermal synthesis of CuS nanostructures with different morphology. Journal of Nano Research, 2012, 18–19: 43–51

    Article  Google Scholar 

  142. Nithya C, Thiyagaraj G. Morphology oriented CuS nanostructures: superior K-ion storage using surface enhanced pseudocapacitive effects. Sustainable Energy & Fuels, 2020, 4(7): 3574–3587

    Article  CAS  Google Scholar 

  143. Guan X H, Qu P, Guan X, et al. Hydrothermal synthesis of hierarchical CuS/ZnS nanocomposites and their photocatalytic and microwave absorption properties. RSC Advances, 2014, 4(30): 15579–15585

    Article  CAS  Google Scholar 

  144. Kundu J, Pradhan D. Controlled synthesis and catalytic activity of copper sulfide nanostructured assemblies with different morphologies. ACS Applied Materials & Interfaces, 2014, 6(3): 1823–1834

    Article  CAS  Google Scholar 

  145. Sohrabnezhad Sh, Zanjanchi M A, Hosseingholizadeh S, et al. Facile and low temperature route to synthesis of CuS nanostructure in mesoporous material by solvothermal method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, 123: 142–150

    Article  CAS  Google Scholar 

  146. Tauc J, Grigorovici R, Vancu A. Optical properties and electronic structure of amorphous germanium. physica status solidi (b), 1966, 15(2): 627–637

    Article  CAS  Google Scholar 

  147. Zhao Y, Pan H, Lou Y, et al. Plasmonic Cu2xS nanocrystals: optical and structural properties of copper-deficient copper(I) sulfides. Journal of the American Chemical Society, 2009, 131(12): 4253–4261

    Article  CAS  Google Scholar 

  148. Shamraiz U, Hussain R A, Badshah A. Fabrication and applications of copper sulfide (CuS) nanostructures. Journal of Solid State Chemistry, 2016, 238: 25–40

    Article  CAS  Google Scholar 

  149. Mageshwari K, Mali S S, Hemalatha T, et al. Low temperature growth of CuS nanoparticles by reflux condensation method. Progress in Solid State Chemistry, 2011, 39(3–4): 108–113

    Article  CAS  Google Scholar 

  150. Mukherjee N, Sinha A, Khan G G, et al. A study on the structural and mechanical properties of nanocrystalline CuS thin films grown by chemical bath deposition technique. Materials Research Bulletin, 2011, 46(1): 6–11

    Article  CAS  Google Scholar 

  151. Taunk M, Chand S. Chemical synthesis and charge transport mechanism in solution processed flexible polypyrrole films. Materials Science in Semiconductor Processing, 2015, 39: 659–664

    Article  CAS  Google Scholar 

  152. Dhanasekar M, Bakiyaraj G, Rammurthi K. Structural, morphological, optical and electrical properties of copper sulphide nano crystalline thin films prepared by chemical bath deposition method. International Journal of ChemTech Research, 2014–2015, 7(3): 1057–1064

    CAS  Google Scholar 

  153. Singh N, Taunk M. In-situ chemical synthesis, microstructural, morphological and charge transport studies of polypyrrole–CuS hybrid nanocomposites. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31(1): 437–445

    Article  CAS  Google Scholar 

  154. Ramesan M T. Synthesis, characterization, and conductivity studies of polypyrrole/copper sulfide nanocomposites. Journal of Applied Polymer Science, 2013, 128(3): 1540–1546

    CAS  Google Scholar 

  155. Ramesan M T. In situ synthesis, characterization and conductivity of copper sulphide/polypyrrole/polyvinyl alcohol blend nanocomposite. Polymer-Plastics Technology and Engineering, 2012, 51(12): 1223–1229

    Article  CAS  Google Scholar 

  156. Iqbal S, Shaid N A, Sajid M M, et al. Extensive evaluation of changes in structural, chemical and thermal properties of copper sulfide nanoparticles at different calcination temperature. Journal of Crystal Growth, 2020, 547: 125823

    Article  CAS  Google Scholar 

  157. Madarász J, Krunks M, Niinistö L, et al. Thermally evolved gases from thiourea complexes of CuCl in air. Journal of Thermal Analysis and Calorimetry, 2015, 120(1): 189–199

    Article  Google Scholar 

  158. Liu Y, Zhu G, Yang J, et al. Phase purification of Cu−S system towards Cu1.8S and its catalytic properties for a clock reaction. RSC Advances, 2015, 5(125): 103458–103464

    Article  CAS  Google Scholar 

  159. Mulla R, Rabinal M H K. Copper sulfides: earth-abundant and low-cost thermoelectric materials. Energy Technology, 2019, 7(7): 1800850

    Article  Google Scholar 

  160. Maneesha P, Paulson A, Sabeer N A M, et al. Thermo electric measurement of nanocrystalline cobalt doped copper sulfide for energy generation. Materials Letters, 2018, 225: 57–61

    Article  CAS  Google Scholar 

  161. Dennler G, Chmielowski R, Jacob S, et al. Are binary copper sulfides/selenides really new and promising thermoelectric materials? Advanced Energy Materials, 2014, 4(9): 1301581

    Article  Google Scholar 

  162. Mulla R, Rabinal M K. Large-scale synthesis of copper sulfide by using elemental sources via simple chemical route. Ultrasonics Sonochemistry, 2017, 39: 528–533

    Article  CAS  Google Scholar 

  163. Yang C, Wang H F, Xu Q. Recent advances in two-dimensional materials for electrochemical energy storage and conversion. Chemical Research in Chinese Universities, 2020, 36(1): 10–23 (in Chinese)

    Article  CAS  Google Scholar 

  164. Iqbal S, Ahmad S. Recent development in hybrid conducting polymers: synthesis, applications and future prospects. Journal of Industrial and Engineering Chemistry, 2018, 60: 53–84

    Article  CAS  Google Scholar 

  165. Kumar S, Saeed G, Zhu L, et al. 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: a review. Chemical Engineering Journal, 2021, 403: 126352

    Article  CAS  Google Scholar 

  166. Moosavifard S E, El-Kady M F, Rahmanifar M S, et al. Designing 3D highly ordered nanoporous CuO electrodes for high-performance asymmetric supercapacitors. ACS Applied Materials & Interfaces, 2015, 7(8): 4851–4860

    Article  CAS  Google Scholar 

  167. Chen Y, Li J, Lei Z, et al. Hollow CuS nanoboxes as Li-free cathode for high-rate and long-life lithium metal batteries. Advanced Energy Materials, 2020, 10(7): 1903401

    Article  CAS  Google Scholar 

  168. Quan Y, Wang G, Lu L, et al. High-performance pseudocapacitor energy storage device based on a hollow-structured copper sulfide nanoflower and carbon quantum dot nanocomposite. Electrochimica Acta, 2020, 353: 136606

    Article  CAS  Google Scholar 

  169. Huang K J, Zhang J Z, Fan Y. One-step solvothermal synthesis of different morphologies CuS nanosheets compared as supercapacitor electrode materials. Journal of Alloys and Compounds, 2015, 625: 158–163

    Article  CAS  Google Scholar 

  170. Hsu Y K, Chen Y C, Lin Y G. Synthesis of copper sulfide nanowire arrays for high-performance supercapacitors. Electrochimica Acta, 2014, 139: 401–407

    Article  CAS  Google Scholar 

  171. Fu W, Han W, Zha H, et al. Nanostructured CuS networks composed of interconnected nanoparticles for asymmetric supercapacitors. Physical Chemistry Chemical Physics, 2016, 18(35): 24471–24476

    Article  CAS  Google Scholar 

  172. Guo J, Zhang X, Sun Y, et al. Double-shell CuS nanocages as advanced supercapacitor electrode materials. Journal of Power Sources, 2017, 355: 31–35

    Article  CAS  Google Scholar 

  173. Xu W, Liang Y, Su Y, et al. Synthesis and properties of morphology controllable copper sulphide nanosheets for supercapacitor application. Electrochimica Acta, 2016, 211: 891–899

    Article  CAS  Google Scholar 

  174. Raghavendra K V G, Gopi C V M, Vinodh R, et al. One-step facile synthesis of dense cloud-like tiny bundled nanoparticles of CuS nanostructures as an efficient electrode material for high-performance supercapacitors. Journal of Energy Storage, 2020, 27: 101148

    Article  Google Scholar 

  175. Krishnamoorthy K, Veerasubramani G K, Rao A N, et al. One-pot hydrothermal synthesis, characterization and electrochemical properties of CuS nanoparticles towards supercapacitor applications. Materials Research Express, 2014, 1(3): 035006

    Article  CAS  Google Scholar 

  176. Heydari H, Moosavifard S E, Elyasi S, et al. Nanoporous CuS nano-hollow spheres as advanced material for high-performance supercapacitors. Applied Surface Science, 2017, 394: 425–430

    Article  CAS  Google Scholar 

  177. Muthu N S, Samikannu S D, Gopalan M. Influence of thiourea concentration on the CuS nanostructures and identification of the most suited electrolyte for high energy density supercapacitor. Ionics, 2019, 25(9): 4409–4423

    Article  Google Scholar 

  178. Liu Y, Zhou Z, Zhang S, et al. Controllable synthesis of CuS hollow microflowers hierarchical structures for asymmetric supercapacitors. Applied Surface Science, 2018, 442: 711–719

    Article  CAS  Google Scholar 

  179. Pan Z, Cao F, Hu X, et al. A facile method for synthesizing CuS decorated Ti3C2 MXene with enhanced performance for asymmetric supercapacitors. Journal of Materials Chemistry A, 2019, 7(15): 8984–8992

    Article  CAS  Google Scholar 

  180. Tian Z, Dou H, Zhang B, et al. Three-dimensional graphene combined with hierarchical CuS for the design of flexible solid-state supercapacitors. Electrochimica Acta, 2017, 237: 109–118

    Article  CAS  Google Scholar 

  181. Ravi S, Gopi C V, Kim H J. Enhanced electrochemical capacitance of polyimidazole coated covellite CuS dispersed CNT composite materials for application in supercapacitors. Dalton Transactions, 2016, 45(31): 12362–12371

    Article  CAS  Google Scholar 

  182. Wang G, Zhang M, Lu L, et al. One-pot synthesis of CuS nanoflower-decorated active carbon layer for high-performance asymmetric supercapacitors. ChemNanoMat, 2018, 4(9): 964–971

    Article  CAS  Google Scholar 

  183. Tian Y, Su Z, Zhao Z, et al. Spherical NiCo2O4/CuS composites for supercapacitor electrodes. Materials Letters, 2020, 264: 127400

    Article  CAS  Google Scholar 

  184. Jin K, Zhou M, Zhao H, et al. Electrodeposited CuS nanosheets on carbonized cotton fabric as flexible supercapacitor electrode for high energy storage. Electrochimica Acta, 2019, 295: 668–676

    Article  CAS  Google Scholar 

  185. Himasree P, Durga I K, Krishna T, et al. One-step hydrothermal synthesis of CuS@MnS on Ni foam for high performance supercapacitor electrode material. Electrochimica Acta, 2019, 305: 467–473

    Article  CAS  Google Scholar 

  186. El-Hout S I, Mohamed S G, Gaber A, et al. High electrochemical performance of rGO anchored CuS nanospheres for supercapacitor applications. Journal of Energy Storage, 2021, 34: 102001

    Article  Google Scholar 

  187. Yu X Y, Yu L, Lou X W. Metal sulfide hollow nanostructures for electrochemical energy storage. Advanced Energy Materials, 2016, 6(3): 1501333

    Article  Google Scholar 

  188. Nam J S, Lee J H, Hwang S M, et al. New insights into the phase evolution in CuS during lithiation and delithiation processes. Journal of Materials Chemistry A, 2019, 7(19): 11699–11708

    Article  CAS  Google Scholar 

  189. Jian K, Chen Z, Meng X. CuS and Cu2S as cathode materials for lithium batteries: a review. ChemElectroChem, 2019, 6(11): 2825–2840

    Article  Google Scholar 

  190. Du Y, Yin Z, Zhu J, et al. A general method for the large-scale synthesis of uniform ultrathin metal sulphide nanocrystals. Nature Communications, 2012, 3(1): 1177

    Article  Google Scholar 

  191. Goriparti S, Miele E, De Angelis F, et al. Review on recent progress of nanostructured anode materials for Li-ion batteries. Journal of Power Sources, 2014, 257: 421–443

    Article  CAS  Google Scholar 

  192. He K, Yao Z, Hwang S, et al. Kinetically-driven phase transformation during lithiation in copper sulfide nanoflakes. Nano Letters, 2017, 17(9): 5726–5733

    Article  CAS  Google Scholar 

  193. Chen G Y, Wei Z Y, Jin B, et al. Hydrothermal synthesis of copper sulfide with novel hierarchical structures and its application in lithium-ion batteries. Applied Surface Science, 2013, 277: 268–271

    Article  CAS  Google Scholar 

  194. Long J, Han T, Zhu M, et al. A matryoshka-like CuS@void@Co3O4 double microcube-locked sulfur as cathode for high-performance lithium–sulfur batteries. Ceramics International, 2021, 47(18): 25769–25776

    Article  CAS  Google Scholar 

  195. Liu H, He Y, Zhang H, et al. Lowering the voltage-hysteresis of CuS anode for Li-ion batteries via constructing heterostructure. Chemical Engineering Journal, 2021, 425: 130548

    Article  CAS  Google Scholar 

  196. Fu X, Xu L, Li J, et al. Flexible solar cells based on carbon nanomaterials. Carbon, 2018, 139: 1063–1073

    Article  CAS  Google Scholar 

  197. Li W, Furlan A, Hendriks K H, et al. Efficient tandem and triple-junction polymer solar cells. Journal of the American Chemical Society, 2013, 135(15): 5529–5532

    Article  CAS  Google Scholar 

  198. Han W, Ren G, Liu J, et al. Recent progress of inverted perovskite solar cells with a modified PEDOT:PSS hole transport layer. ACS Applied Materials & Interfaces, 2020, 12(44): 49297–49322

    Article  CAS  Google Scholar 

  199. Du Z, Pan Z, Fabregat-Santiago F, et al. Carbon counter-electrode-based quantum-dot-sensitized solar cells with certified efficiency exceeding 11%. The Journal of Physical Chemistry Letters, 2016, 7(16): 3103–3111

    Article  CAS  Google Scholar 

  200. Song H, Lin Y, Zhang Z, et al. Improving the efficiency of quantum dot sensitized solar cells beyond 15% via secondary deposition. Journal of the American Chemical Society, 2021, 143(12): 4790–4800

    Article  CAS  Google Scholar 

  201. Sukhovatkin V, Hinds S, Brzozowski L, et al. Colloidal quantum-dot photodetectors exploiting multiexciton generation. Science, 2009, 324(5934): 1542–1544

    Article  CAS  Google Scholar 

  202. Tan J, Shen Y, Zhang Z, et al. Highly-efficient quantum dot-sensitized solar cells based on Sn doped ZnO and CuS electrodes. Journal of Materials Science: Materials in Electronics, 2015, 26(4): 2145–2150

    CAS  Google Scholar 

  203. Sunesh C D, Gopi C V, Muthalif M P A, et al. Improving the efficiency of quantum-dot-sensitized solar cells by optimizing the growth time of the CuS counter electrode. Applied Surface Science, 2017, 416: 446–453

    Article  CAS  Google Scholar 

  204. Kim H J, Myung-Sik L, Gopi C V, et al. Cost-effective and morphology controllable PVP based highly efficient CuS counter electrodes for high-efficiency quantum dot-sensitized solar cells. Dalton Transactions, 2015, 44(25): 11340–11351

    Article  CAS  Google Scholar 

  205. Muthalif M P A, Sunesh C D, Choe Y. Improved photovoltaic performance of quantum dot-sensitized solar cells based on highly electrocatalytic Ca-doped CuS counter electrodes. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 358: 177–185

    Article  Google Scholar 

  206. Gopi C V M, Sambasivam S, Vinodh R, et al. Nanostructured Ni-doped CuS thin film as an efficient counter electrode material for high-performance quantum dot-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2020, 31(2): 975–982

    CAS  Google Scholar 

  207. Rao S S, Durga I K, Kang T S, et al. Enhancing the photovoltaic performance and stability of QDSSCs using surface reinforced Pt nanostructures with controllable morphology and superior electrocatalysis via cost-effective chemical bath deposition. Dalton Transactions, 2016, 45(8): 3450–3463

    Article  Google Scholar 

  208. Wen L, Chen Q, Zhou L, et al. Cu1.8S@CuS composite material improved the photoelectric efficiency of cadmium-series QDSSCs. Optical Materials, 2020, 108: 110172

    Article  CAS  Google Scholar 

  209. Zervos M, Vasile E, Vasile E, et al. Current transport properties of CuS/Sn: In2O3 versus CuS/SnO2 nanowires and negative differential resistance in quantum dot sensitized solar cells. The Journal of Physical Chemistry C, 2016, 120(1): 11–20

    Article  CAS  Google Scholar 

  210. Sung S D, Lim I, Kang P, et al. Design and development of highly efficient PbS quantum dot-sensitized solar cells working in an aqueous polysulfide electrolyte. Chemical Communications, 2013, 49(54): 6054–6056

    Article  CAS  Google Scholar 

  211. Kamaja C K, Devarapalli R R, Shelke M V. One-step synthesis of a MoS2−CuS composite with high electrochemical activity as an effective counter electrode for CdS/CdSe sensitized solar cells. ChemElectroChem, 2017, 4(8): 1984–1989

    Article  CAS  Google Scholar 

  212. Li L, Zhu P, Peng S, et al. Controlled growth of CuS on electrospun carbon nanofibers as an efficient counter electrode for quantum dot-sensitized solar cells. The Journal of Physical Chemistry C, 2014, 118(30): 16526–16535

    Article  CAS  Google Scholar 

  213. Zhu Y, Cui H, Jia S, et al. 3D graphene frameworks with uniformly dispersed CuS as an efficient catalytic electrode for quantum dot-sensitized solar cells. Electrochimica Acta, 2016, 208: 288–295

    Article  CAS  Google Scholar 

  214. Kim H J, Suh S M, Rao S S, et al. Investigation on novel CuS/NiS composite counter electrode for hindering charge recombination in quantum dot sensitized solar cells. Journal of Electroanalytical Chemistry, 2016, 777: 123–132

    Article  CAS  Google Scholar 

  215. Givalou L, Antoniadou M, Perganti D, et al. Electrodeposited cobalt–copper sulfide counter electrodes for highly efficient quantum dot sensitized solar cells. Electrochimica Acta, 2016, 210: 630–638

    Article  CAS  Google Scholar 

  216. Eskandari M, Ghahary R, Shokri M, et al. Zinc oxide/copper sulfide nanorods as a highly catalytic counter electrode material for quantum dot sensitized solar cells. RSC Advances, 2016, 6(57): 51894–51899

    Article  CAS  Google Scholar 

  217. Song X, Wang J, Liu X, et al. Microwave-assisted hydrothermal synthesis of CuS nanoplate films on conductive substrates as efficient counter electrodes for liquid-junction quantum dot-sensitized solar cells. Journal of the Electrochemical Society, 2017, 164(4): H215–H224

    Article  CAS  Google Scholar 

  218. Wang F, Dong H, Pan J, et al. One-step electrochemical deposition of hierarchical CuS nanostructures on conductive substrates as robust, high-performance counter electrodes for quantum-dot-sensitized solar cells. The Journal of Physical Chemistry C, 2014, 118(34): 19589–19598

    Article  CAS  Google Scholar 

  219. Muthalif M P A, Choe Y. Surface modification of CuS counter electrodes by hydrohalic acid treatment for improving interfacial charge transfer in quantum-dot-sensitized solar cells. Journal of Colloid and Interface Science, 2021, 595: 15–24

    Article  CAS  Google Scholar 

  220. Xi F, Liu H, Li W, et al. Fabricating CuS counter electrode for quantum dots-sensitized solar cells via electro-deposition and sulfurization of Cu2O. Electrochimica Acta, 2015, 178: 329–335

    Article  CAS  Google Scholar 

  221. Raj C J, Prabakar K, Savariraj A D, et al. Surface reinforced platinum counter electrode for quantum dots sensitized solar cells. Electrochimica Acta, 2013, 103: 231–236

    Article  Google Scholar 

  222. Agoro M A, Mbese J Z, Meyer E L, et al. Electrochemical signature of CuS photosensitizers thermalized from alkyldithiocarbamato Cu(II) molecular precursors for quantum dots sensitized solar cells. Materials Letters, 2021, 285: 129191

    Article  CAS  Google Scholar 

  223. Zheng W, Zhang S. Three-dimensional graphitic C3N4/CuS composite as the low-cost and high performance counter electrodes in QDSCs. Journal of Alloys and Compounds, 2021, 862: 158706

    Article  CAS  Google Scholar 

  224. Song Z, Lei H, Li B, et al. Enhanced field emission from in situ synthesized 2D copper sulfide nanoflakes at low temperature by using a novel controllable solvothermal preferred edge growth route. Physical Chemistry Chemical Physics, 2015, 17(17): 11790–11795

    Article  CAS  Google Scholar 

  225. Su X F, Chen J B, He R M, et al. The preparation of oxygen-deficient ZnO nanorod arrays and their enhanced field emission. Materials Science in Semiconductor Processing, 2017, 67: 55–61

    Article  CAS  Google Scholar 

  226. He R M, Chen J B, Qi B J, et al. Enhanced field emission properties of the copper sulfide nanowalls with optimized 3-D morphology. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 103: 227–233

    Article  CAS  Google Scholar 

  227. Antony R P, Mathews T, Panda K, et al. Enhanced field emission properties of electrochemically synthesized self-aligned nitrogen-doped TiO2 nanotube array thin films. The Journal of Physical Chemistry C, 2012, 116(31): 16740–16746

    Article  CAS  Google Scholar 

  228. Li Y, Qi W, Li Y, et al. Modeling the size-dependent solid–solid phase transition temperature of Cu2S nanosolids. The Journal of Physical Chemistry C, 2012, 116(17): 9800–9804

    Article  CAS  Google Scholar 

  229. Sawafta R, Shahwan T. A comparative study of the removal of methylene blue by iron nanoparticles from water and water–ethanol solutions. Journal of Molecular Liquids, 2019, 273: 274–281

    Article  CAS  Google Scholar 

  230. Xu W, Zhu S, Liang Y, et al. Nanoporous CuS with excellent photocatalytic property. Scientific Reports, 2015, 5(1): 18125

    Article  CAS  Google Scholar 

  231. Nasseh N, Taghavi L, Barikbin B, et al. Synthesis and characterizations of a novel FeNi3/SiO2/CuS magnetic nanocomposite for photocatalytic degradation of tetracycline in simulated wastewater. Journal of Cleaner Production, 2018, 179: 42–54

    Article  CAS  Google Scholar 

  232. Yang L, Guan X, Wang G S, et al. Synthesis of ZnS/CuS nanospheres loaded on reduced graphene oxide as high-performance photocatalysts under simulated sunlight irradiation. New Journal of Chemistry, 2017, 41(13): 5732–5744

    Article  CAS  Google Scholar 

  233. Wang G, Fakhri A. Preparation of CuS/polyvinyl alcohol–chitosan nanocomposites with photocatalysis activity and antibacterial behavior against G+/G bacteria. International Journal of Biological Macromolecules, 2020, 155: 36–41

    Article  CAS  Google Scholar 

  234. Yu S, Liu J, Zhou Y, et al. Effect of synthesis method on the nanostructure and solar-driven photocatalytic properties of TiO2−CuS composites. ACS Sustainable Chemistry & Engineering, 2017, 5(2): 1347–1357

    Article  CAS  Google Scholar 

  235. Borthakur P, Boruah P K, Darabdhara G, et al. Microwave assisted synthesis of CuS-reduced graphene oxide nanocomposite with efficient photocatalytic activity towards azo dye degradation. Journal of Environmental Chemical Engineering, 2016, 4(4): 4600–4611

    Article  CAS  Google Scholar 

  236. Borthakur P, Das M R, Szunerits S, et al. CuS decorated functionalized reduced graphene oxide: a dual responsive nanozyme for selective detection and photoreduction of Cr(VI) in an aqueous medium. ACS Sustainable Chemistry & Engineering, 2019, 7(19): 16131–16143

    Article  CAS  Google Scholar 

  237. Adhikari S, Sarkar D, Madras G. Hierarchical design of CuS architectures for visible light photocatalysis of 4-chlorophenol. ACS Omega, 2017, 2(7): 4009–4021

    Article  CAS  Google Scholar 

  238. Wang X, Li L, Fu Z, et al. Carbon quantum dots decorated CuS nanocomposite for effective degradation of methylene blue and antibacterial performance. Journal of Molecular Liquids, 2018, 268: 578–586

    Article  CAS  Google Scholar 

  239. Mohamed R, Shawky A. CNT supported Mn-doped ZnO nanoparticles: simple synthesis and improved photocatalytic activity for degradation of malachite green dye under visible light. Applied Nanoscience, 2018, 8(5): 1179–1188

    Article  CAS  Google Scholar 

  240. Mohamed R, Mkhalid I, Shawky A. Facile synthesis of Pt−In2O3/BiVO4 nanospheres with improved visible-light photocatalytic activity. Journal of Alloys and Compounds, 2019, 775: 542–548

    Article  CAS  Google Scholar 

  241. You X, Geng X, Liu X, et al. A comparative study of the photocatalytic properties of CuS nanotubes and nanoparticles by hydrothermal method. Indian Journal of Chemistry Section A: Inorganic Bio-Inorganic Physical Theoretical & Analytical Chemistry, 2017, 56(1): 57–62

    Google Scholar 

  242. Wang M, Xie F, Li W, et al. Preparation of various kinds of copper sulfides in a facile way and the enhanced catalytic activity by visible light. Journal of Materials Chemistry A, 2013, 1(30): 8616–8621

    Article  CAS  Google Scholar 

  243. Cheng Z, Wang S, Wang Q, et al. A facile solution chemical route to self-assembly of CuS ball-flowers and their application as an efficient photocatalyst. CrystEngComm, 2010, 12(1): 144–149

    Article  CAS  Google Scholar 

  244. Meng X, Tian G, Chen Y, et al. Hierarchical CuS hollow nanospheres and their structure-enhanced visible light photocatalytic properties. CrystEngComm, 2013, 15(25): 5144–5149

    Article  CAS  Google Scholar 

  245. Nethravathi C, R R N, Rajamathi J T, et al. Microwave-assisted synthesis of porous aggregates of CuS nanoparticles for sunlight photocatalysis. ACS Omega, 2019, 4(3): 4825–4831

    Article  CAS  Google Scholar 

  246. Deng X, Wang C, Yang H, et al. One-pot hydrothermal synthesis of CdS decorated CuS microflower-like structures for enhanced photocatalytic properties. Scientific Reports, 2017, 7(1): 3877

    Article  Google Scholar 

  247. Chen Q, Wu S, Xin Y. Synthesis of Au−CuS−TiO2 nanobelts photocatalyst for efficient photocatalytic degradation of antibiotic oxytetracycline. Chemical Engineering Journal, 2016, 302: 377–387

    Article  CAS  Google Scholar 

  248. Harish S, Archana J, Navaneethan M, et al. Synergetic effect of CuS@ZnS nanostructures on photocatalytic degradation of organic pollutant under visible light irradiation. RSC Advances, 2017, 7(55): 34366–34375

    Article  CAS  Google Scholar 

  249. El-Hout S I, El-Sheikh S M, Gaber A, et al. Highly efficient sunlight-driven photocatalytic degradation of malachite green dye over reduced graphene oxide-supported CuS nanoparticles. Journal of Alloys and Compounds, 2020, 849: 156573

    Article  CAS  Google Scholar 

  250. Hu X S, Shen Y, Xu L H, et al. Preparation of flower-like CuS by solvothermal method and its photodegradation and UV protection. Journal of Alloys and Compounds, 2016, 674: 289–294

    Article  CAS  Google Scholar 

  251. Hu X S, Shen Y, Lu L S, et al. Synthesis of flower-like CuS for photodegradation of dye wastewater. Journal of Nanoscience and Nanotechnology, 2017, 17(8): 5335–5341

    Article  CAS  Google Scholar 

  252. Yoo J H, Ji M, Kim J H, et al. Facile synthesis of hierarchical CuS microspheres with high visible-light-driven photocatalytic activity. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 401: 112782

    Article  CAS  Google Scholar 

  253. Hu M, Tian H, He J. Unprecedented selectivity and rapid uptake of CuS nanostructures toward Hg(II) ions. ACS Applied Materials & Interfaces, 2019, 11(21): 19200–19206

    Article  CAS  Google Scholar 

  254. Guo J, Tian H, He J. Integration of CuS nanoparticles and cellulose fibers towards fast, selective and efficient capture and separation of mercury ions. Chemical Engineering Journal, 2021, 408: 127336

    Article  CAS  Google Scholar 

  255. Zhang X, Liu M, Kang Z, et al. NIR-triggered photocatalytic/photothermal/photodynamic water remediation using eggshell-derived CaCO3/CuS nanocomposites. Chemical Engineering Journal, 2020, 388: 124304

    Article  CAS  Google Scholar 

  256. Chandra M, Bhunia K, Pradhan D. Controlled synthesis of CuS/TiO2 heterostructured nanocomposites for enhanced photocatalytic hydrogen generation through water splitting. Inorganic Chemistry, 2018, 57(8): 4524–4533

    Article  CAS  Google Scholar 

  257. Gunnagol R M, Rabinal M H K. TiO2/rGO/CuS nanocomposites for efficient photocatalytic degradation of rhodamine-B dye. ChemistrySelect, 2019, 4(20): 6167–6176

    Article  CAS  Google Scholar 

  258. Li Z, Zeng B. CdS nanoparticle-decorated CuS microflower–2D graphene hybrids and their enhanced photocatalytic performance. Chalcogenide Letters, 2021, 18(1): 39–46

    Article  CAS  Google Scholar 

  259. Liu Y, Li M, Zhang Q, et al. One-step synthesis of a WO3−CuS nanosheet heterojunction with enhanced photocatalytic performance for methylene blue degradation and Cr(VI) reduction. Journal of Chemical Technology and Biotechnology, 2020, 95(3): 665–674

    Article  CAS  Google Scholar 

  260. Zhang F, Zhuang H Q, Zhang W, et al. Noble-metal-free CuS/CdS photocatalyst for efficient visible-light-driven photocatalytic H2 production from water. Catalysis Today, 2019, 330: 203–208

    Article  CAS  Google Scholar 

  261. Bhoi Y P, Mishra B. Photocatalytic degradation of alachlor using type-II CuS/BiFeO3 heterojunctions as novel photocatalyst under visible light irradiation. Chemical Engineering Journal, 2018, 344: 391–401

    Article  CAS  Google Scholar 

  262. Kamranifar M, Allahresani A, Naghizadeh A. Synthesis and characterizations of a novel CoFe2O4@CuS magnetic nanocomposite and investigation of its efficiency for photocatalytic degradation of penicillin G antibiotic in simulated wastewater. Journal of Hazardous Materials, 2019, 366: 545–555

    Article  CAS  Google Scholar 

  263. Zhou L, Dai S, Xu S, et al. Piezoelectric effect synergistically enhances the performance of Ti32-oxo-cluster/BaTiO3/CuS pn heterojunction photocatalytic degradation of pollutants. Applied Catalysis B: Environmental, 2021, 291: 120019

    Article  CAS  Google Scholar 

  264. Lai C, Zhang M, Li B, et al. Fabrication of CuS/BiVO4 (0 4 0) binary heterojunction photocatalysts with enhanced photocatalytic activity for ciprofloxacin degradation and mechanism insight. Chemical Engineering Journal, 2019, 358: 891–902

    Article  CAS  Google Scholar 

  265. Nasseh N, Barikbin B, Taghavi L. Photocatalytic degradation of tetracycline hydrochloride by FeNi3/SiO2/CuS magnetic nanocomposite under simulated solar irradiation: efficiency, stability, kinetic and pathway study. Environmental Technology & Innovation, 2020, 20: 101035

    Article  CAS  Google Scholar 

  266. Reddy D A, Kim E H, Gopannagari M, et al. Enhanced photocatalytic hydrogen evolution by integrating dual cocatalysts on heterophase CdS nano-junctions. ACS Sustainable Chemistry & Engineering, 2018, 6(10): 12835–12844

    Article  CAS  Google Scholar 

  267. Chen Q, Zhang M, Li J, et al. Construction of immobilized 0D/1D heterostructure photocatalyst Au/CuS/CdS/TiO2 NBs with enhanced photocatalytic activity towards moxifloxacin degradation. Chemical Engineering Journal, 2020, 389: 124476

    Article  CAS  Google Scholar 

  268. Lee W C, Kim K B, Gurudatt N G, et al. Comparison of enzymatic and non-enzymatic glucose sensors based on hierarchical Au−Ni alloy with conductive polymer. Biosensors & Bioelectronics, 2019, 130: 48–54

    Article  CAS  Google Scholar 

  269. Wei C, Zou X, Liu Q, et al. A highly sensitive non-enzymatic glucose sensor based on CuS nanosheets modified Cu2O/CuO nanowire arrays. Electrochimica Acta, 2020, 334: 135630

    Article  CAS  Google Scholar 

  270. Dutta A K, Das S, Samanta P K, et al. Non-enzymatic amperometric sensing of hydrogen peroxide at a CuS modified electrode for the determination of urine H2O2. Electrochimica Acta, 2014, 144: 282–287

    Article  CAS  Google Scholar 

  271. Kim W B, Lee S H, Cho M, et al. Facile and cost-effective CuS dendrite electrode for non-enzymatic glucose sensor. Sensors and Actuators B: Chemical, 2017, 249: 161–167

    Article  CAS  Google Scholar 

  272. Swaidan A, Borthakur P, Boruah P K, et al. A facile preparation of CuS−BSA nanocomposite as enzyme mimics: application for selective and sensitive sensing of Cr(VI) ions. Sensors and Actuators B: Chemical, 2019, 294: 253–262

    Article  CAS  Google Scholar 

  273. Li Y, Kang Z, Kong L, et al. MXene−Ti3C2/CuS nanocomposites: enhanced peroxidase-like activity and sensitive colorimetric cholesterol detection. Materials Science and Engineering C, 2019, 104: 110000

    Article  CAS  Google Scholar 

  274. Zhang Y, Wang Y N, Sun X T, et al. Boron nitride nanosheet/CuS nanocomposites as mimetic peroxidase for sensitive colorimetric detection of cholesterol. Sensors and Actuators B: Chemical, 2017, 246: 118–126

    Article  CAS  Google Scholar 

  275. Xu J, Zhang J, Yao C, et al. Synthesis of novel highly porous CuS golf balls by hydrothermal method and their application in ammonia gas sensing. Journal of the Chilean Chemical Society, 2013, 58(2): 1722–1724

    Article  CAS  Google Scholar 

  276. Cui G, Wang L, Li L, et al. Synthesis of CuS nanoparticles decorated Ti3C2Tx MXene with enhanced microwave absorption performance. Progress in Natural Science: Materials International, 2020, 30(3): 343–351

    Article  CAS  Google Scholar 

  277. Sun X, Sui M, Cui G, et al. Fe3O4 nanoparticles decorated on a CuS platelet-based sphere: a popcorn chicken-like heterostructure as an ideal material against electromagnetic pollution. RSC Advances, 2018, 8(31): 17489–17496

    Article  CAS  Google Scholar 

  278. Wang Y, Gao X, Wu X, et al. Hierarchical ZnFe2O4@RGO@CuS composite: strong absorption and wide-frequency absorption properties. Ceramics International, 2018, 44(8): 9816–9822

    Article  CAS  Google Scholar 

  279. Yang J, Dai D, Lou X, et al. Supramolecular nanomaterials based on hollow mesoporous drug carriers and macrocycle-capped CuS nanogates for synergistic chemo-photothermal therapy. Theranostics, 2020, 10(2): 615–629

    Article  CAS  Google Scholar 

  280. Shi H, Yan R, Wu L, et al. Tumor-targeting CuS nanoparticles for multimodal imaging and guided photothermal therapy of lymph node metastasis. Acta Biomaterialia, 2018, 72: 256–265

    Article  CAS  Google Scholar 

  281. Xu M, Yang G, Bi H, et al. Combination of CuS and g-C3N4 QDs on upconversion nanoparticles for targeted photothermal and photodynamic cancer therapy. Chemical Engineering Journal, 2019, 360: 866–878

    Article  CAS  Google Scholar 

  282. Goel S, Chen F, Cai W. Synthesis and biomedical applications of copper sulfide nanoparticles: from sensors to theranostics. Small, 2014, 10(4): 631–645

    Article  CAS  Google Scholar 

  283. Feng Q, Zhang Y, Zhang W, et al. Tumor-targeted and multistimuli responsive drug delivery system for near-infrared light induced chemo-phototherapy and photoacoustic tomography. Acta Biomaterialia, 2016, 38: 129–142

    Article  CAS  Google Scholar 

  284. Hou L, Shan X, Hao L, et al. Copper sulfide nanoparticle-based localized drug delivery system as an effective cancer synergistic treatment and theranostic platform. Acta Biomaterialia, 2017, 54: 307–320

    Article  CAS  Google Scholar 

  285. Jia Q, Li D, Zhang Q, et al. Biomineralization synthesis of HBc−CuS nanoparticles for near-infrared light-guided photothermal therapy. Journal of Materials Science, 2019, 54(20): 13255–13264

    Article  CAS  Google Scholar 

  286. Ramadan S, Guo L, Li Y, et al. Hollow copper sulfide nanoparticle-mediated transdermal drug delivery. Small, 2012, 8(20): 3143–3150

    Article  CAS  Google Scholar 

  287. Dong K, Liu Z, Li Z, et al. Hydrophobic anticancer drug delivery by a 980 nm laser-driven photothermal vehicle for efficient synergistic therapy of cancer cells in vivo. Advanced Materials, 2013, 25(32): 4452–4458

    Article  CAS  Google Scholar 

  288. Ji W, Li N, Chen D, et al. A hollow porous magnetic nanocarrier for efficient near-infrared light- and pH-controlled drug release. RSC Advances, 2014, 4(92): 51055–51061

    Article  CAS  Google Scholar 

  289. Deng X, Li K, Cai X, et al. A hollow-structured CuS@Cu2S@Au nanohybrid: synergistically enhanced photothermal efficiency and photoswitchable targeting effect for cancer theranostics. Advanced Materials, 2017, 29(36): 1701266

    Article  Google Scholar 

  290. Yu Z, Chan W K, Zhang Y, et al. Near-infrared-II activated inorganic photothermal nanomedicines. Biomaterials, 2021, 269: 120459

    Article  CAS  Google Scholar 

  291. Younis M R, An R B, Yin Y C, et al. Plasmonic nanohybrid with high photothermal conversion efficiency for simultaneously effective antibacterial/anticancer photothermal therapy. ACS Applied Bio Materials, 2019, 2(9): 3942–3953

    Article  CAS  Google Scholar 

  292. Guo L, Li Y, Xiao Z, et al. Photothermal properties of hollow gold nanostructures for cancer theranostics. In: Handbook of Nanomaterials Properties. Springer, 2014, 1199–1226

  293. Wang S, Zhao Y, Xu Y. Recent advances in applications of multimodal ultrasound-guided photoacoustic imaging technology. Visual Computing for Industry, Biomedicine, and Art, 2020, 3(1): 24

    Article  Google Scholar 

  294. Guo L, Panderi I, Yan D D, et al. A comparative study of hollow copper sulfide nanoparticles and hollow gold nanospheres on degradability and toxicity. ACS Nano, 2013, 7(10): 8780–8793

    Article  CAS  Google Scholar 

  295. Xiao Q, Zheng X, Bu W, et al. A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy. Journal of the American Chemical Society, 2013, 135(35): 13041–13048

    Article  CAS  Google Scholar 

  296. Zha Z, Wang S, Zhang S, et al. Targeted delivery of CuS nanoparticles through ultrasound image-guided microbubble destruction for efficient photothermal therapy. Nanoscale, 2013, 5(8): 3216–3219

    Article  CAS  Google Scholar 

  297. Li Y, Lu W, Huang Q, et al. Copper sulfide nanoparticles for photothermal ablation of tumor cells. Nanomedicine, 2010, 5(8): 1161–1171

    Article  CAS  Google Scholar 

  298. Wang Z, Yu W, Yu N, et al. Construction of CuS@Fe-MOF nanoplatforms for MRI-guided synergistic photothermal-chemo therapy of tumors. Chemical Engineering Journal, 2020, 400: 125877

    Article  CAS  Google Scholar 

  299. Li Y, Bai G, Zeng S, et al. Theranostic carbon dots with innovative NIR-II emission for in vivo renal-excreted optical imaging and photothermal therapy. ACS Applied Materials & Interfaces, 2019, 11(5): 4737–4744

    Article  CAS  Google Scholar 

  300. Zhou L, Chen F, Hou Z, et al. Injectable self-healing CuS nanoparticle complex hydrogels with antibacterial, anti-cancer, and wound healing properties. Chemical Engineering Journal, 2021, 409: 128224

    Article  CAS  Google Scholar 

  301. Arshad M, Wang Z, Nasir J A, et al. Single source precursor synthesized CuS nanoparticles for NIR phototherapy of cancer and photodegradation of organic carcinogen. Journal of Photochemistry and Photobiology B: Biology, 2021, 214: 112084

    Article  CAS  Google Scholar 

  302. Bu X, Zhou D, Li J, et al. Copper sulfide self-assembly architectures with improved photothermal performance. Langmuir, 2014, 30(5): 1416–1423

    Article  CAS  Google Scholar 

  303. Wang D, Li Q, Xing Z, et al. Copper sulfide nanoplates as nanosensors for fast, sensitive and selective detection of DNA. Talanta, 2018, 178: 905–909

    Article  CAS  Google Scholar 

  304. Kelkar S S, Reineke T M. Theranostics: combining imaging and therapy. Bioconjugate Chemistry, 2011, 22(10): 1879–1903

    Article  CAS  Google Scholar 

  305. Liu R, Jing L, Peng D, et al. Manganese(II) chelate functionalized copper sulfide nanoparticles for efficient magnetic resonance/photoacoustic dual-modal imaging guided photothermal therapy. Theranostics, 2015, 5(10): 1144–1153

    Article  CAS  Google Scholar 

  306. Wang Y, Yang G, Wang Y, et al. Multiple imaging and excellent anticancer efficiency of an upconverting nanocarrier mediated by single near infrared light. Nanoscale, 2017, 9(14): 4759–4769

    Article  CAS  Google Scholar 

  307. Santiesteban D Y, Dumani D S, Profili D, et al. Copper sulfide perfluorocarbon nanodroplets as clinically relevant photoacoustic/ultrasound imaging agents. Nano Letters, 2017, 17(10): 5984–5989

    Article  CAS  Google Scholar 

  308. Zhou M, Zhao J, Tian M, et al. Radio-photothermal therapy mediated by a single compartment nanoplatform depletes tumor initiating cells and reduces lung metastasis in the orthotopic 4T1 breast tumor model. Nanoscale, 2015, 7(46): 19438–19447

    Article  CAS  Google Scholar 

  309. Han L, Zhang Y, Chen X W, et al. Protein-modified hollow copper sulfide nanoparticles carrying indocyanine green for photothermal and photodynamic therapy. Journal of Materials Chemistry B, 2016, 4(1): 105–112

    Article  CAS  Google Scholar 

  310. Wang S, Riedinger A, Li H, et al. Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects. ACS Nano, 2015, 9(2): 1788–1800

    Article  CAS  Google Scholar 

  311. Wu X, Suo Y, Shi H, et al. Deep-tissue photothermal therapy using laser illumination at NIR-IIa window. Nano-Micro Letters, 2020, 12(1): 38

    Article  CAS  Google Scholar 

  312. Zhao Y, Chen B Q, Kankala R K, et al. Recent advances in combination of copper chalcogenide-based photothermal and reactive oxygen species-related therapies. ACS Biomaterials Science & Engineering, 2020, 6(9): 4799–4815

    Article  CAS  Google Scholar 

  313. Zhang C, Li D, Shi X. Hybrid nanogels for photoacoustic imaging and photothermal therapy. In: Choi S K, ed. Photonanotechnology for Therapeutics and Imaging. Elsevier, 2020, 23–43

  314. Curcio A, Silva A K A, Cabana S, et al. Iron oxide nanoflowers@CuS hybrids for cancer tri-therapy: interplay of photothermal therapy, magnetic hyperthermia and photodynamic therapy. Theranostics, 2019, 9(5): 1288–1302

    Article  CAS  Google Scholar 

  315. Chu Z, Wang Z, Chen L, et al. Combining magnetic resonance imaging with photothermal therapy of CuS@BSA nanoparticles for cancer theranostics. ACS Applied Nano Materials, 2018, 1(5): 2332–2340

    Article  CAS  Google Scholar 

  316. Li D, Zhang T, Min C, et al. Biodegradable theranostic nanoplatforms of albumin-biomineralized nanocomposites modified hollow mesoporous organosilica for photoacoustic imaging guided tumor synergistic therapy. Chemical Engineering Journal, 2020, 388: 124253

    Article  CAS  Google Scholar 

  317. Kumar P, Nagarajan R, Sarangi R. Quantitative X-ray absorption and emission spectroscopies: electronic structure elucidation of Cu2S and CuS. Journal of Materials Chemistry C, 2013, 1(13): 2448–2454

    Article  CAS  Google Scholar 

  318. Liang W, Whangbo M H. Conductivity anisotropy and structural phase transition in covellite CuS. Solid State Communications, 1993, 85(5): 405–408

    Article  CAS  Google Scholar 

  319. Fjellvåg H, Grønvold F, Stølen S, et al. Low-temperature structural distortion in CuS. Zeitschrift für Kristallographie - Crystalline Materials, 1988, 184(1–2): 111–121

    Google Scholar 

  320. Pacioni N L, Filippenko V, Presseau N, et al. Oxidation of copper nanoparticles in water: mechanistic insights revealed by oxygen uptake and spectroscopic methods. Dalton Transactions, 2013, 42(16): 5832–5838

    Article  CAS  Google Scholar 

  321. Liu H, Zhou Y, Kulinich S A, et al. Scalable synthesis of hollow Cu2O nanocubes with unique optical properties via a simple hydrolysis-based approach. Journal of Materials Chemistry A, 2013, 1(2): 302–307

    Article  CAS  Google Scholar 

  322. Xu X, Li L, Chen H, et al. Constructing heterostructured FeS2/CuS nanospheres as high rate performance lithium ion battery anodes. Inorganic Chemistry Frontiers, 2020, 7(9): 1900–1908

    Article  CAS  Google Scholar 

  323. Gao Q, Wu X, Huang T. Novel energy efficient window coatings based on In doped CuS nanocrystals with enhanced NIR shielding performance. Solar Energy, 2021, 220: 1–7

    Article  CAS  Google Scholar 

  324. Poudel K, Gautam M, Jin S G, et al. Copper sulfide: an emerging adaptable nanoplatform in cancer theranostics. International Journal of Pharmaceutics, 2019, 562: 135–150

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is highly thankful to the Sardar Patel University, Mandi, Himachal Pradesh, India-175001 and Government College, Nadaun, District Hamirpur, Himachal Pradesh, India-177033 for unwavering support and moral support during data analysis and compilation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narinder Singh.

Ethics declarations

Disclosure of potential conflicts of interests The author declares that there is no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, N. Copper(II) sulfide nanostructures and its nanohybrids: recent trends, future perspectives and current challenges. Front. Mater. Sci. 17, 230632 (2023). https://doi.org/10.1007/s11706-023-0632-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11706-023-0632-1

Keywords

Navigation