Skip to main content

Advertisement

Log in

Synthesis of CuS nanoparticles by a wet chemical route and their photocatalytic activity

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

CuS nanoparticles (NPs) of few nanometers in size were prepared by a wet chemical method. The structural, compositional, and optical properties of the NPs were characterized by X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, micro Raman and Fourier transform infrared spectroscopy, N2 adsorption–desorption isotherms, and UV–Vis diffuse reflectance spectroscopy. The XRD pattern proved the presence of hexagonal phase of CuS particles which was further supported by Raman spectrum. The estimated band gap energy of 2.05 eV for the slightly sulfur-rich CuS NPs is relatively larger than that of bulk CuS (1.85 eV), indicating the small size effect. As-prepared NPs showed excellent photocatalytic activity for the degradation of methylene blue (MB) under visible light. The surface-bound OH ions at the CuS nanostructures help adsorb MB molecules facilitating their degradation process under visible light illumination. The studies presented in this paper suggest that the synthesized CuS NPs are promising, efficient, stable, and visible-light-sensitive photocatalyst for the remediation of wastewater polluted by chemically stable azo dyes such as MB.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Basu M, Sinha AK, Pradhan M, Sarkar S, Negishi Y, Govind Pal T (2010) Evolution of hierarchical hexagonal stacked plates of CuS from liquid-liquid interface and its photocatalytic application for oxidative degradation of different dyes under indoor lighting. Environ Sci Technol 44:6313–6318

    Article  Google Scholar 

  • Cao JG, Shen M, Zhou LW (2006) Preparation and electrorheological properties of triethanolamine-modified TiO2. J Solid State Chem 179:1565–1568

    Article  Google Scholar 

  • Chen YB, Chen L, Wu LM (2008) Water-induced thermolytic formation of homogeneous core–shell CuS microspheres and their shape retention on desulfurization. Cryst Growth Des 8:2736–2740

    Article  Google Scholar 

  • Corro G, Bañuelos F, Vidal E, Cebada S (2014) Measurements of surface acidity of solid catalysts for free fatty acids esterification in jatropha curcas crude oil for biodiesel production. Fuel 115:625–628

    Article  Google Scholar 

  • Daghrir R, Drogui P, Robert D (2013) Modified TiO2 for environmental photocatalytic applications: a review. Ind Eng Chem Res 52:3581–3599

    Google Scholar 

  • Deng C, Ge X, Hu H, Yao L, Han C, Zhao D (2014) Template-free and green sonochemical synthesis of hierarchically structured CuS hollow microspheres displaying excellent fenton-like catalytic activities. Cryst Eng Comm 16:2738–2745

    Article  Google Scholar 

  • Gorai S, Ganguli D, Chaudhuri S (2005) Synthesis of copper sulfides of varying morphologies and stoichiometries controlled by chelating and nonchelating solvents in a solvothermal process. Cryst Growth Des 5:875–877

    Article  Google Scholar 

  • Gu W, Wu P (2007) FT-IR and 2D-IR spectroscopic studies on the effect of ions on the phase separation behavior of PVME aqueous solution. Anal Sci 23:823–827

    Article  Google Scholar 

  • Guo Y, Wang L, Yang L, Zhang J, Jiang L, Ma X (2011) Optical and photocatalytic properties of arginine-stabilized cadmium sulfide. Mater Lett 65:486–489

    Article  Google Scholar 

  • Gupta VK, Pathania D, Agarwal S, Singh P (2012) Adsorptional photocatalytic degradation of methylene blue onto pectin–CuS nanocomposite under solar light. J Hazard Mater 243:179–186

    Article  Google Scholar 

  • Han Y, Wang Y, Gao W, Wang Y, Jiao L, Yuan H, Liu S (2011) Synthesis of novel CuS with hierarchical structures and its application in lithium-ion batteries. Powder Technol 212:64–68

    Article  Google Scholar 

  • Hoffmann MR, Martin ST, Choi W, Bahneman DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  Google Scholar 

  • Houas A, Lachheb H, Ksibi M, Elaloui E, Guillard C, Herrmann JM (2001) Photocatalytic degradation pathway of methylene blue in water. Appl Catal B 31:145–157

    Article  Google Scholar 

  • Jeromenok J, Weber J (2013) Restricted Access: on the nature of adsorption/desorption hysteresis in amorphous, microporous polymeric materials. Langmuir 29:12982–12989

    Article  Google Scholar 

  • Jiang X, Xie Y, Lu J, He W, Zhu L, Qian Y (2000) Preparation and phase transformation of nanocrystalline copper sulfides (Cu9S8, Cu7S4 and CuS) at low temperature. J Mater Chem 10:2193–2196

    Article  Google Scholar 

  • Kumar P, Gusain M, Nagarajan R (2011) Synthesis of Cu1.8S and CuS from copper-thiourea containing precursors; anionic (Cl, NO3 , SO4 2−) influence on the product stoichiometry. Inorg Chem 50:3065–3070

    Article  Google Scholar 

  • Kumar P, Nagarajan R, Sarangi R (2013) Quantitative X-ray absorption and emission spectroscopies: electronic structure elucidation of Cu2S and CuS. J Mater Chem C 1:2448–2454

    Article  Google Scholar 

  • Li HL, Zhu YC, Avivi S, Palchik O, Xiong JP, Koltypin Y, Palchik V, Gedanken A (2002) Sonochemical process for the preparation of α-CuSe nanocrystals and flakes. J Mater Chem 12:3723–3727

    Article  Google Scholar 

  • Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758

    Article  Google Scholar 

  • Liufu SC, Chen LD, Yao Q, Huang FQ (2008) In situ assembly of CuxS quantum-dots into thin film: a highly conductive p-type transparent film. J Phys Chem C 112:12085–12088

    Article  Google Scholar 

  • Mane RS, Lokhande CD (2000) Chemical deposition method for metal chalcogenide thin films. Mater Chem Phys 65:1–31

    Article  Google Scholar 

  • Meng X, Tian G, Chen Y, Zhai R, Zhou J, Shi Y, Cao X, Zhoua W, Fu H (2013) Hierarchical CuS hollow nanospheres and their structure-enhanced visible light photocatalytic properties. Cryst Eng Commun 15:5144–5149

    Article  Google Scholar 

  • Munce CG, Parker GK, Holt SA, Hope GA (2007) A Raman spectroelectrochemical investigation of chemical bath deposited CuxS thin films and their modification. Colloids Surf A 295:152–158

    Article  Google Scholar 

  • Nagaveni K, Sivalingam G, Hegde MS, Madras G (2004) Solar photocatalytic degradation of dyes: high activity of combustion synthesized nano TiO2. Appl Catal B 48:83–93

    Article  Google Scholar 

  • Ou S, Xie Q, Ma D, Liang J, Hu X, Yu W, Qian Y (2005) A precursor decomposition route to polycrystalline CuS nanorods. Mater Chem Phys 94:460–466

    Article  Google Scholar 

  • Panigrahi PK, Pathak A (2013) The growth of bismuth sulfide nanorods from spherical-shaped amorphous precursor particles under hydrothermal condition. J Nanopart, Article ID 367812:1–11

  • Pei LZ, Wang JF, Tao XX, Wang SB, Dong YP, Fan CG, Zhang QF (2011) Synthesis of CuS and Cu1.1Fe1.1S2 crystals and their electrochemical properties. Mater Charact 62:354–359

    Article  Google Scholar 

  • Qiu X, Miyauchi M, Yu H, Irie H, Hashimoto K (2010) Visible-light-driven Cu(II) − (Sr1−yNay)(Ti1−xMox)O3 photocatalysts based on conduction band control and surface ion modification. J Am Chem Soc 132:15259–15267

    Article  Google Scholar 

  • Roy P, Srivastava SK (2007) Low-temperature synthesis of CuS nanorods by simple wet chemical method. Mater Lett 61:1693–1697

    Article  Google Scholar 

  • Safrani T, Jopp J, Golan Y (2013) A comparative study of the structure and optical properties of copper sulfide thin films chemically deposited on various substrates. RSC Adv 3:23066–23074

    Article  Google Scholar 

  • Setkus A, Galdikas A, Mironas A, Simkieni I, Ankutiene I, Janickis V, Kaciulis S, Mattogno G, Ingo GM (2001) Properties of CuxS thin film based structures: influence on the sensitivity to ammonia at room temperatures. Thin Solid Films 391:275–281

    Article  Google Scholar 

  • Shen G, Chen D, Tang K, Liu X, Huang L, Qian Y (2003) General synthesis of metal sulfides nanocrystallines via a simple polyol route. J Solid State Chem 173(1):232–235

    Article  Google Scholar 

  • Shu QW, Li CM, Gao PF, Gaoa MX, Huang CZ (2015) Porous hollow CuS nanospheres with prominent peroxidase-like activity prepared in large scale by a one-pot controllable hydrothermal step. RSC Adv 5:17458–17465

    Article  Google Scholar 

  • Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotty RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619

    Article  Google Scholar 

  • Van der Vegt NFA, Kusuma VA, Freeman BD (2010) Basis of solubility versus TC correlations in polymeric gas separation membranes. Macromolecules 43:1473–1479

    Article  Google Scholar 

  • Wang X, Xu C, Zhang Z (2006) Synthesis of CuS nanorods by one-step reaction. Mater Lett 60(3):345–348

    Article  Google Scholar 

  • Wang X, Fang Z, Lin X (2009) Copper sulfide nanotubes: facile, large-scale synthesis, and application in photodegradation. J Nanopart Res 11:731–736

    Article  Google Scholar 

  • Wu C, Zhou G, Mao D, Zhang Z, Wu Y, Wang W, Luo L, Wang L, Yu Y, Hu J, Zhu Z, Zhang Y, Jie J (2013) CTAB assisted synthesis of CuS microcrystals: synthesis, mechanism, and electrical properties. J Mater Sci Technol 29(11):1047–1052

    Article  Google Scholar 

  • Xiong S, Xi B, Qian Y (2010) CdS hierarchical nanostructures with tunable morphologies: preparation and photocatalytic Properties. J Phys Chem C 114:14029–14035

    Article  Google Scholar 

  • Xu N, Shi Z, Fan Y, Dong J, Shi J, Hu M (1999) Effects of particle size of TiO2 on photocatalytic degradation of methylene blue in aqueous suspensions. Ind Eng Chem Res 38:373–379

    Article  Google Scholar 

  • Xu Y, Salim N, Bumby CW, Tilley RD (2009) Synthesis of SnS quantum dots. J Am Chem Soc 131:15990–15991

    Article  Google Scholar 

  • Zhang W, Wen X, Yang S (2003) Synthesis and Characterization of uniform arrays of copper sulfide nanorods coated with nanolayers of polypyrrole. Langmuir 19:4420–4426

    Article  Google Scholar 

  • Zhang YC, Du ZN, Li KW, Zhang M, Dionysiou DD (2011) High-performance visible-light-driven SnS2/SnO2 nanocomposite photocatalyst prepared via in situ hydrothermal oxidation of SnS2 nanoparticles. ACS Appl Mater Interfaces 3:1528–1537

    Article  Google Scholar 

Download references

Acknowledgments

Authors thank Dr. J.M. Gracia y Jimenez for providing the FT-IR equipment, and the central laboratory of IFUAP-BUAP for the Raman spectroscopy facility. The technical assistance of Rogelio Moran Elvira in SEM measurement and Ma. Luisa Raman Garcia in XRD analysis has been acknowledged. The CuS nanoparticles used in this work was developed for the projects: Centro Mexicano de Innovación en Energía Solar (CeMIE-Sol 207450/P28), Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (PAPIIT-UNAM IN 113214, IN 107815), and Consejo Nacional de Ciencia y Tecnología (CONACyT-238869).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Mathew.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, M., Mathews, N.R., Sanchez-Mora, E. et al. Synthesis of CuS nanoparticles by a wet chemical route and their photocatalytic activity. J Nanopart Res 17, 301 (2015). https://doi.org/10.1007/s11051-015-3103-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3103-5

Keywords

Navigation