Skip to main content
Log in

Cobalt nitride enabled benzimidazoles production from furyl/aryl bio-alcohols and o-nitroanilines without an external H-source

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Benzimidazole derivatives have wide-spectrum biological activities and pharmacological effects, but remain challenging to be produced from biomass feedstocks. Here, we report a green hydrogen transfer strategy for the efficient one-pot production of benzimidazoles from a wide range of bio-alcohols and o-nitroanilines enabled by cobalt nitride species on hierarchically porous and recyclable nitrogen-doped carbon catalysts (Co/CNx-T, T denotes the pyrolysis temperature) without using an external hydrogen source and base additive. Among the tested catalysts, Co/CNx-700 exhibited superior catalytic performance, furnishing 2-substituted benzimidazoles in 65%–92% yields. Detailed mechanistic studies manifest that the coordination between Co2+ and N with appropriate electronic state on the porous nitrogen-doped carbon having structural defects, as well as the remarkable synergetic effect of Co/N dual sites contribute to the pronounced activity of Co/CNx-700, while too high pyrolysis temperature may cause the breakage of the catalyst Co-N bond to lower down its activity. Also, it is revealed that the initial dehydrogenation of bio-alcohol and the subsequent cyclodehydrogenation are closely correlated with the hydrogenation of nitro groups. The catalytic hydrogen transfer-coupling protocol opens a new avenue for the synthesis of N-heterocyclic compounds from biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li H, Zhao W, Fang Z. Hydrophobic Pd nanocatalysts for one-pot and high-yield production of liquid furanic biofuels at low temperatures. Applied Catalysis B: Environmental, 2017, 215: 18–27

    Article  CAS  Google Scholar 

  2. Li H, Li Y, Fang Z, Smith R L Jr. Efficient catalytic transfer hydrogenation of biomass-based furfural to furfuryl alcohol with recycable Hf-phenylphosphonate nanohybrids. Catalysis Today, 2019, 319: 84–92

    Article  CAS  Google Scholar 

  3. Xu C, Paone E, Rodriguez-Padro D, Luque R, Mauriello F. Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural. Chemical Society Reviews, 2020, 49(13): 4273–4306

    Article  CAS  PubMed  Google Scholar 

  4. He J, Li H, Shunmugavel S, Yang S. Catalytic upgrading of biomass-derived sugars with acidic nanoporous materials: structural role in carbon-chain length variation. ChemSusChem, 2019, 12(2): 347–378

    Article  CAS  PubMed  Google Scholar 

  5. Campisi S, Chan-Thaw C E, Chinchilla L E, Chutia A, Botton G A, Mohammed K M H, Dimitratos N, Wells P P, Villa A. Dual-site-mediated hydrogenation catalysis on Pd/NiO: selective biomass transformation and maintenance of catalytic activity at low Pd loading. ACS Catalysis, 2020, 10(10): 5483–5492

    Article  CAS  Google Scholar 

  6. Cioc R, Lutz M, Pidko E A, Crockatt M, van der Waal J K, Bruijnincx P C A. Direct Diels-Alder reactions of furfural derivatives with maleimides. Green Chemistry, 2021, 23(1): 367–373

    Article  CAS  Google Scholar 

  7. Marc C, Harm U J. Preparation of benzene carboxylic acids, esters and anhydrides from furanics. PCT Int. Appl., 2017146581, 2017-08-31

  8. Liu H, Li H, Luo N, Wang F. Visible-light-induced oxidative lignin C-C bond cleavage to aldehydes using vanadium catalysts. ACS Catalysis, 2020, 10(1): 632–643

    Article  CAS  Google Scholar 

  9. Yan F, Zhao C, Yi L, Zhang J, Ge B, Zhang T, Li W. Effect of the degree of dispersion of Pt over MgAl2O4 on the catalytic hydrogenation of benzaldehyde. Chinese Journal of Catalysis, 2017, 38(9): 1613–1620

    Article  CAS  Google Scholar 

  10. Espro C, Paone E, Mauriello F, Gotti R, Uliassi E, Bolognesi M L, Rodríguez-Padrón D, Luque R. Sustainable production of pharmaceutical, nutraceutical and bioactive compounds from biomass and waste. Chemical Society Reviews, 2021, 50(20): 11191–11207

    Article  CAS  PubMed  Google Scholar 

  11. Li Y, Zhou X, Wu H, Yu Z, Li H, Yang S. Nanospheric heterogeneous acid-enabled direct upgrading of biomass feedstocks to novel benzimidazoles with potent antibacterial activities. Industrial Crops and Products, 2020, 150: 112406

    Article  CAS  Google Scholar 

  12. Hashem H E, Bakri Y E. An overview on novel synthetic approaches and medicinal applications of benzimidazole compounds. Arabian Journal of Chemistry, 2021, 14(11): 103418

    Article  CAS  Google Scholar 

  13. Yuk S, Lee D H, Choi S, Doo G, Lee D W, Kim H T. An electrode-supported fabrication of thin polybenzimidazole membrane-based polymer electrolyte membrane fuel cell. Electrochimica Acta, 2018, 270: 402–408

    Article  CAS  Google Scholar 

  14. Zhang Z H, Li T S, Li J J. A highly effective sulfamic acid/methanol catalytic system for the synthesis of benzimidazole derivatives at room temperature. Monatshefte für Chemie, 2007, 138(1): 89–94

    Article  CAS  Google Scholar 

  15. Wang R, Lu X X, Yu X Q, Shi L, Sun Y. Acid-catalyzed solvent-free synthesis of 2-arylbenzimidazoles under microwave irradiation. Journal of Molecular Catalysis A: Chemical, 2007, 266(1–2): 198–201

    Article  CAS  Google Scholar 

  16. Zhu C J, Wei Y Y. An inorganic iodine-catalyzed oxidative system for the synthesis of benzimidazoles using hydrogen peroxide under ambient conditions. ChemSusChem, 2011, 4(8): 1082–1086

    Article  CAS  PubMed  Google Scholar 

  17. Daw P, Ben-David Y, Milstein D. Direct synthesis of benzimidazoles by dehydrogenative coupling of aromatic diamines and alcohols catalyzed by cobalt. ACS Catalysis, 2017, 7(11): 7456–7460

    Article  CAS  Google Scholar 

  18. Putta R R, Chun S, Lee S B, Oh D C, Hong S. Iron-catalyzed acceptorless dehydrogenative coupling of alcohols with aromatic diamines: selective synthesis of 1,2-disubstituted benzimidazoles. Frontiers in Chemistry, 2020, 8: 429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li L, Luo Q, Cui H H, Li R J, Zhang J, Peng T Y. Air-stable ruthenium(II)-NNN pincer complexes for the efficient coupling of aromatic diamines and alcohols to 1H-benzo[d]imidazoles with the liberation of H2. ChemCatChem, 2018, 10(7): 1607–1613

    Article  CAS  Google Scholar 

  20. Sharma A K, Joshi H, Bhaskar R, Singh A K. Complexes of (η5-Cp*)Ir(iii) with 1-benzyl-3-phenylthio/selenomethyl-1,3-dihydrobenzoimidazole-2-thione/selenone: catalyst for oxidation and 1,2-substituted benzimidazole synthesis. Dalton Transactions (Cambridge, England), 2017, 46(7): 2228–2237

    Article  CAS  Google Scholar 

  21. Mori T, Ishii C, Kimura M. Pd-C catalyzed dehydrogenative oxidation of alcohols to functionalized molecules. Organic Process Research & Development, 2019, 23(8): 1709–1717

    Article  CAS  Google Scholar 

  22. Xu Z J, Yu X L, Sang X X, Wang D W. BINAP-copper supported by hydrotalcite as an efficient catalyst for the borrowing hydrogen reaction and dehydrogenation cyclization under water or solvent-free conditions. Green Chemistry, 2018, 20(11): 2571–2577

    Article  CAS  Google Scholar 

  23. Guan Q, Sun Q, Wen L, Zha Z, Yang Y, Wang Z. The synthesis of benzimidazoles via a recycled palladium catalysed hydrogen transfer under mild conditions. Organic & Biomolecular Chemistry, 2018, 16(12): 2088–2096

    Article  CAS  Google Scholar 

  24. Feng F, Ye J, Cheng Z, Xu X, Zhang Q, Ma L, Lu C, Li X. Cu-Pd/γ-Al2O3 catalyzed the coupling of multi-step reactions: direct synthesis of benzimidazole derivatives. RSC Advances, 2016, 6(76): 72750–72755

    Article  CAS  Google Scholar 

  25. Yu H, Wada K, Fukutake T, Feng Q, Uemura S, Isoda K, Hirai T, Iwamoto S. Effect of phosphorus-modification of titania supports on the iridium-catalyzed synthesis of benzimidazoles. Catalysis Today, 2021, 375: 410–417

    Article  CAS  Google Scholar 

  26. Tang L, Guo X, Yang Y, Zha Z, Wang Z. Gold nanoparticles supported on titanium dioxide: an efficient catalyst for highly selective synthesis of benzoxazoles and benzimidazoles. Chemical Communications (Cambridge), 2014, 50(46): 6145–6148

    Article  CAS  Google Scholar 

  27. Das S, Mallick S, Sarkar S D. Cobalt-catalyzed sustainable synthesis of benzimidazoles by redox-economical coupling of o-nitroanilines and alcohols. Journal of Organic Chemistry, 2019, 84(18): 12111–12119

    Article  CAS  PubMed  Google Scholar 

  28. Putta R R, Chun S, Choi S H, Lee S B, Oh D C, Hong S. Iron(0)-catalyzed transfer hydrogenative condensation of nitroarenes with alcohols: a straightforward approach to benzoxazoles, benzothiazoles, and benzimidazoles. Journal of Organic Chemistry, 2020, 85(23): 15396–15405

    Article  CAS  PubMed  Google Scholar 

  29. Nguyen T B, Ermolenko L, Al-Mourabi A. Sodium sulfide: a sustainable solution for unbalanced redox condensation reaction between o-nitroanilines and alcohols catalyzed by an iron—sulfur system. Synthesis, 2015, 47(12): 1741–1748

    Article  CAS  Google Scholar 

  30. Sun Z, Bottari G, Barta K. Supercritical methanol as solvent and carbon source in the catalytic conversion of 1,2-diaminobenzenes and 2-nitroanilines to benzimidazoles. Green Chemistry, 2015, 17(12): 5172–5181

    Article  CAS  Google Scholar 

  31. Wu C, Zhu C Y, Liu K K, Yang S W, Sun Y, Zhu K, Cao Y L, Zhang S, Zhuo S F, Zhang M, Zhang Q, Zhang H. Nano-pyramid-type Co-ZnO/NC for hydrogen transfer cascade reaction between alcohols and nitrobenzene. Applied Catalysis B: Environmental, 2021, 300: 120288

    Article  Google Scholar 

  32. Li C H, Meng Y, Yang S, Li H. ZIF-67 derived Co/NC nanoparticles enable catalytic leuckart-type reductive amination of bio-based carbonyls to N-formyl compounds. ChemCatChem, 2021, 13(24): 5166–5177

    Article  CAS  Google Scholar 

  33. Zhang Y, Cao P, Zhang H Y, Yin G, Zhao J. Cobalt nanoparticles anchoring on nitrogen doped carbon with excellent performances for transfer hydrogenation of nitrocompounds to primary amines and N-substituted formamides with formic acid. Catalysis Communications, 2019, 129: 105747

    Article  CAS  Google Scholar 

  34. Chen S, Ling L L, Jiang S F, Jiang H. Selective hydrogenation of nitroarenes under mild conditions by the optimization of active sites in a well defined Co@NC catalyst. Green Chemistry, 2020, 22(17): 5730–5741

    Article  CAS  Google Scholar 

  35. Poon P C, Wang Y, Li W, Suen D W S, Lam W W Y, Yap D Z J, Mehdi L, Qi J, Lu X Y, Wong E Y C, Yang C, Tsang C W. Synergistic effect of Co catalysts with atomically dispersed CoNx active sites on ammonia borane hydrolysis for hydrogen generation. Journal of Materials Chemistry A, 2022, 10(10): 5580–5592

    Article  CAS  Google Scholar 

  36. Song T, Ren P, Duan Y N, Wang Z Z, Chen X F, Yang Y. Cobalt nanocomposites on N-doped hierarchical porous carbon for highly selective formation of anilines and imines from nitroarenes. Green Chemistry, 2018, 20(20): 4629–4637

    Article  CAS  Google Scholar 

  37. Yuan M, Long Y, Yang J, Hu X W, Xu D, Zhu Y Y, Dong Z P. Biomass sucrose-derived cobalt@nitrogen-doped carbon for catalytic transfer hydrogenation of nitroarenes with formic acid. ChemSusChem, 2018, 11(23): 4156–4165

    Article  CAS  PubMed  Google Scholar 

  38. Zhang R Q, Ma A, Liang X, Zhao L M, Zhao H, Yuan Z Y. Cobalt nanoparticle decorated N-doped carbons derived from a cobalt covalent organic framework for oxygen electrochemistry. Frontiers of Chemical Science and Engineering, 2021, 15(6): 11550–11560

    Article  Google Scholar 

  39. Zhang F, Li J, Liu P, Li H, Chen S, Li Z, Zan W Y, Guo J, Zhang X M. Ultra-high loading single CoN3 sites in N-doped graphene-like carbon for efficient transfer hydrogenation of nitroaromatics. Journal of Catalysis, 2021, 400: 40–49

    Article  CAS  Google Scholar 

  40. Deng L, Yang Z, Li R, Chen B, Jia Q, Zhu Y, Xia Y. Graphene-reinforced metal-organic frameworks derived cobalt sulfide/carbon nanocomposites as efficient multifunctional electrocatalysts. Frontiers of Chemical Science and Engineering, 2021, 15(6): 1487–1499

    Article  CAS  Google Scholar 

  41. Ma S, Han Z, Leng K, Liu X, Wang Y, Qu Y, Bai J. Ionic exchange of metal organic frameworks for constructing unsaturated copper single-atom catalysts for boosting oxygen reduction reaction. Small, 2020, 16(23): 2001384

    Article  CAS  Google Scholar 

  42. Li M, Bai L, Wu S J, Wen X D, Guan J Q. Co/CoOx nanoparticles embedded on carbon for efficient catalysis of oxygen evolution and oxygen reduction reactions. ChemSusChem, 2018, 11(10): 1722–1727

    Article  CAS  PubMed  Google Scholar 

  43. Rui T, Lu G P, Zhao X, Cao X, Chen Z. The synergistic catalysis on Co nanoparticles and CoNx sites of aniline-modified ZIF derived Co@NCs for oxidative esterification of HMF. Chinese Chemical Letters, 2021, 32(2): 685–690

    Article  CAS  Google Scholar 

  44. Ma Z, Song T, Yuan Y, Yang Y. Synergistic catalysis on Fe-Nx sites and Fe nanoparticles for efficient synthesis of quinolines and quinazolinones via oxidative coupling of amines and aldehydes. Chemical Science (Cambridge), 2019, 10(44): 10283–10289

    Article  CAS  Google Scholar 

  45. Li C H, Li Y Z, Luo X X, Li Z Y, Zhang H, Li H, Yang S. Catalytic cascade acetylation-alkylation of biofuran to C17 diesel precursor enabled by a budget acid-switchable catalyst. Chinese Journal of Chemical Engineering, 2021, 34: 171–179

    Article  CAS  Google Scholar 

  46. Liu J, Zhang H, Wang J Y, Zhao G M, Liu D. Relationship between the structure and dehydrogenation of alcohols/hydrogenation of nitroarenes and base catalysis performance of Co-N-C catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2020, 129(2): 865–881

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 21908033), Guizhou Provincial S&T Project (Grant No. ZK[2022]011, 2018[4007]), and Fok Ying-Tong Education Foundation (Grant No. 161030). The authors thank Dr. Sudarsanam Putla (Indian Institute of Technology Hyderabad) for his help in improving the English writing of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hu Li or Song Yang.

Electronic Supplementary Material

11705_2022_2174_MOESM1_ESM.pdf

Cobalt nitride enabled benzimidazoles production from furyl/aryl bio-alcohols and o-nitroanilines without an external H-source

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Zhang, LL., Li, H. et al. Cobalt nitride enabled benzimidazoles production from furyl/aryl bio-alcohols and o-nitroanilines without an external H-source. Front. Chem. Sci. Eng. 17, 68–81 (2023). https://doi.org/10.1007/s11705-022-2174-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2174-y

Keywords

Navigation