Skip to main content
Log in

Relationship between the structure and dehydrogenation of alcohols/hydrogenation of nitroarenes and base catalysis performance of Co–N–C catalyst

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A Co–N–C catalyst was fabricated via pyrolysis–reduction process. Dehydrogenation/hydrogenation and base catalysis performances of the Co–N–C catalyst were investigated by using the reductive coupling of nitroarenes with alcohols and aldol condensation as probe reactions. Various characterizations were performed to explore effects of reduction and pyrolysis temperature on the structure/composition and basicity of the Co–N–C catalyst, and the relationship between structure-dehydrogenation/hydrogenation and base catalysis performance was discussed accordingly. Two different structures of Co–N–C catalyst (Co–N–C/C3N4 and Co–N–C/CNT) were obtained in different pyrolysis temperature. Co–N–C-600 with C3N4 exhibits very weak catalytic performance owe to its poor pore system and active phase. Dehydrogenation/hydrogenation behaviors of Co–N–C/CNT depend on the amount of Co–N, graphitic N in Co–N–C, while the basicity of Co–N–C is closely related to the content of N species, particularly pyrrolic N and pyridinic N. The appropriate pyrolysis temperature benefits the formation of active species, developed pore organization and strong basicity. And, the H2 reduction improve dehydrogenation/hydrogenation activity of Co–N–C/CNT because reduction can destroy carbon coating layers to expose more Co–N species and promote the transformation of N species to graphitic N. Meanwhile, H2 reduction increases the contents of graphitic N and reduces the content of pyrrolic N and pyridinic N, thus weakening catalyst basicity and consequently reducing base catalytic activity of Co–N–C/CNT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chen Y, Wang Z, Mao S, Wang Y (2019) Rational design of hydrogenation catalysts using nitrogen-doped porous carbon. Chin J Catal 40(7):971–979. https://doi.org/10.1016/s1872-2067(19)63353-x

    Article  CAS  Google Scholar 

  2. Wang Y, Yao J, Li H, Su D, Antonietti M (2011) Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media. J Am Chem Soc 133(8):2362–2365. https://doi.org/10.1021/ja109856y

    Article  CAS  PubMed  Google Scholar 

  3. Chen Y, Jie S, Yang C, Liu Z (2017) Active and efficient Co-N/C catalysts derived from cobalt porphyrin for selective oxidation of alkylaromatics. Appl Surf Sci 419:98–106. https://doi.org/10.1016/j.apsusc.2017.04.246

    Article  CAS  Google Scholar 

  4. Cheng T, Yu H, Peng F, Wang H, Zhang B, Su D (2016) Identifying active sites of CoNC/CNT from pyrolysis of molecularly defined complexes for oxidative esterification and hydrogenation reactions. Catal Sci Technol 6(4):1007–1015. https://doi.org/10.1039/c5cy01349f

    Article  CAS  Google Scholar 

  5. Jagadeesh RV, Stemmler T, Surkus AE, Bauer M, Pohl MM, Radnik J, Junge K, Junge H, Bruckner A, Beller M (2015) Cobalt-based nanocatalysts for green oxidation and hydrogenation processes. Nat Protoc 10(6):916–926. https://doi.org/10.1038/nprot.2015.049

    Article  PubMed  Google Scholar 

  6. Liu D, Yang P, Zhang H, Liu M, Zhang W, Xu D, Gao J (2019) Direct reductive coupling of nitroarenes and alcohols catalysed by Co–N–C/CNT@AC. Green Chem 21(8):2129–2137. https://doi.org/10.1039/c8gc03818j

    Article  CAS  Google Scholar 

  7. Zhang L, Wang A, Wang W, Huang Y, Liu X, Miao S, Liu J, Zhang T (2015) Co–N–C catalyst for C–C coupling reactions: on the catalytic performance and active sites. ACS Catal 5(11):6563–6572. https://doi.org/10.1021/acscatal.5b01223

    Article  CAS  Google Scholar 

  8. Bai C, Li A, Yao X, Liu H, Li Y (2016) Efficient and selective aerobic oxidation of alcohols catalysed by MOF-derived Co catalysts. Green Chem 18(4):1061–1069. https://doi.org/10.1039/c5gc02082d

    Article  CAS  Google Scholar 

  9. Jagadeesh RV, Junge H, Pohl MM, Radnik J, Bruckner A, Beller M (2013) Selective oxidation of alcohols to esters using heterogeneous Co3O4-N@C catalysts under mild conditions. J Am Chem Soc 135(29):10776–10782. https://doi.org/10.1021/ja403615c

    Article  CAS  PubMed  Google Scholar 

  10. Zhong W, Liu H, Bai C, Liao S, Li Y (2015) Base-free oxidation of alcohols to esters at room temperature and atmospheric conditions using nanoscale Co-based catalysts. ACS Catal 5(3):1850–1856. https://doi.org/10.1021/cs502101c

    Article  CAS  Google Scholar 

  11. Wu Y, Ye X, Zhang S, Meng S, Fu X, Wang X, Zhang X, Chen S (2018) Photocatalytic synthesis of Schiff base compounds in the coupled system of aromatic alcohols and nitrobenzene using CdXZn1−XS photocatalysts. J Catal 359:151–160. https://doi.org/10.1016/j.jcat.2017.12.025

    Article  CAS  Google Scholar 

  12. Higashimoto S, Nakai Y, Azuma M, Takahashi M, Sakata Y (2014) One-pot synthesis of imine from benzyl alcohol and nitrobenzene on visible-light responsive CdS–TiO2 photocatalysts. RSC Adv 4(71):37662–37668. https://doi.org/10.1039/c4ra06231k

    Article  CAS  Google Scholar 

  13. Hirakawa H, Katayama M, Shiraishi Y, Sakamoto H, Wang K, Ohtani B, Ichikawa S, Tanaka S, Hirai T (2015) One-pot synthesis of imines from nitroaromatics and alcohols by tandem photocatalytic and catalytic reactions on Degussa (Evonik) P25 titanium dioxide. ACS Appl Mater Interfaces 7:3797–3806. https://doi.org/10.1021/am508769x

    Article  CAS  PubMed  Google Scholar 

  14. Nakai Y, Azuma M, Muraoka M, Kobayashi H, Higashimoto S (2017) One-pot imine synthesis from benzylic alcohols and nitrobenzene on CdS-sensitized TiO2 photocatalysts: effects of the electric nature of the substituent and solvents on the photocatalytic activity. Mol Catal 443:203–208. https://doi.org/10.1016/j.mcat.2017.09.018

    Article  CAS  Google Scholar 

  15. Selvam K, Sakamoto H, Shiraishi Y, Hirai T (2015) One-pot synthesis of secondary amines from alcohols and nitroarenes on TiO2 loaded with Pd nanoparticles under UV irradiation. New J Chem 39(4):2467–2473. https://doi.org/10.1039/c4nj01851f

    Article  CAS  Google Scholar 

  16. Song Y, Wang H, Liang S, Yu Y, Li L, Wu L (2018) One-pot synthesis of secondary amine via photoalkylation of nitroarenes with benzyl alcohol over Pd/monolayer H1.07Ti1.73O4·H2O nanosheets. J Catal 361:105–115. https://doi.org/10.1016/j.jcat.2018.02.005

    Article  CAS  Google Scholar 

  17. Cui X, Deng Y, Shi F (2013) Reductive N-alkylation of nitro compounds to N-alkyl and N, N-dialkyl amines with glycerol as the hydrogen source. ACS Catal 3(5):808–811. https://doi.org/10.1021/cs400049b

    Article  CAS  Google Scholar 

  18. Lee C, Liu S (2011) Preparation of secondary and tertiary amines from nitroarenes and alcohols. Chem Commun (Camb) 47(24):6981–6983. https://doi.org/10.1039/c1cc11609f

    Article  CAS  Google Scholar 

  19. Liu H, Chuah GK, Jaenicke S (2015) Alumina-entrapped Ag catalyzed nitro compounds coupled with alcohols using borrowing hydrogen methodology. Phys Chem Chem Phys 17(22):15012–15018. https://doi.org/10.1039/c5cp00330j

    Article  CAS  PubMed  Google Scholar 

  20. Liu Y, Chen W, Feng C, Deng G (2011) Ruthenium-catalyzed one-pot aromatic secondary amine formation from nitroarenes and alcohols. Chem Asian J 6(5):1142–1146. https://doi.org/10.1002/asia.201000945

    Article  CAS  PubMed  Google Scholar 

  21. Mandi U, Roy AS, Kundu SK, Roy S, Bhaumik A, Islam SM (2016) Mesoporous polyacrylic acid supported silver nanoparticles as an efficient catalyst for reductive coupling of nitrobenzenes and alcohols using glycerol as hydrogen source. J Colloid Interface Sci 472:202–209. https://doi.org/10.1016/j.jcis.2016.03.037

    Article  CAS  PubMed  Google Scholar 

  22. Shimizu K, Shimura K, Nishimura M, Satsuma A (2011) Direct synthesis of N-substituted anilines from nitroaromatics and alcohols under H2 by alumina-supported silver cluster catalysts. ChemCatChem 3(11):1755–1758. https://doi.org/10.1002/cctc.201100171

    Article  CAS  Google Scholar 

  23. Zanardi A, Mata JA, Peris E (2010) One-pot preparation of imines from nitroarenes by a tandem process with an Ir-Pd heterodimetallic catalyst. Chem Eur J 16(34):10502–10506. https://doi.org/10.1002/chem.201000801

    Article  CAS  PubMed  Google Scholar 

  24. Wang Y, Wang J, Zhang Y, Song F, Xie Y, Wang M, Cui H, Yi W (2019) N-doped carbon materials as heterogeneous catalysts for high efficiency isomerization glucose to fructose in aqueous media. Catal Lett. https://doi.org/10.1007/s10562-019-03020-1

    Article  Google Scholar 

  25. Formenti D, Ferretti F, Topf C, Surkus A-E, Pohl M-M, Radnik J, Schneider M, Junge K, Beller M, Ragaini F (2017) Co-based heterogeneous catalysts from well-defined α-diimine complexes: discussing the role of nitrogen. J Catal 351:79–89. https://doi.org/10.1016/j.jcat.2017.04.014

    Article  CAS  Google Scholar 

  26. Yang P, Zhang J, Liu D, Liu M, Zhang H, Zhao P, Zhang C (2018) Facile synthesis of porous nitrogen-doped carbon for aerobic oxidation of amines to imines. Microporous Mesoporous Mater 266:198–203. https://doi.org/10.1016/j.micromeso.2018.03.002

    Article  CAS  Google Scholar 

  27. Zhang C, Zhao P, Zhang Z, Zhang J, Yang P, Gao P, Gao J, Liu D (2017) Co–N–C supported on SiO2: a facile, efficient catalyst for aerobic oxidation of amines to imines. RSC Adv 7(75):47366–47372. https://doi.org/10.1039/c7ra09516c

    Article  CAS  Google Scholar 

  28. Lu H-S, Zhang H, Liu R, Zhang X, Zhao H, Wang G (2017) Macroscale cobalt-MOFs derived metallic Co nanoparticles embedded in N-doped porous carbon layers as efficient oxygen electrocatalysts. Appl Surf Sci 392:402–409. https://doi.org/10.1016/j.apsusc.2016.09.045

    Article  CAS  Google Scholar 

  29. Qiu Y, Yang C, Huo J, Liu Z (2016) Synthesis of Co-N-C immobilized on carbon nanotubes for ethylbenzene oxidation. J Mol Catal A 424:276–282. https://doi.org/10.1016/j.molcata.2016.09.011

    Article  CAS  Google Scholar 

  30. Mu J, Li J, Zhao X, Yang E, Zhao X (2016) Cobalt-doped graphitic carbon nitride with enhanced peroxidase-like activity for wastewater treatment. RSC Adv 6(42):35568–35576. https://doi.org/10.1039/c6ra02911f

    Article  CAS  Google Scholar 

  31. Zhou L, Wang L, Lei J, Liu Y, Zhang J (2017) Fabrication of TiO2/Co-g-C3N4 heterojunction catalyst and its photocatalytic performance. Catal Commun 89:125–128. https://doi.org/10.1016/j.catcom.2016.09.022

    Article  CAS  Google Scholar 

  32. Yang H, Cao R, Sun P, Deng X, Zhang S, Xu X (2018) Highly dispersed and noble metal-free MPX (M = Ni Co, Fe) coupled with g-C3N4 nanosheets as 0D/2D photocatalysts for hydrogen evolution. Appl Surf Sci 458:893–902. https://doi.org/10.1016/j.apsusc.2018.07.149

    Article  CAS  Google Scholar 

  33. Yoon KR, Shin K, Park J, Cho SH, Kim C, Jung JW, Cheong JY, Byon HR, Lee HM, Kim ID (2018) Brush-like cobalt nitride anchored carbon nanofiber membrane: current collector-catalyst integrated cathode for long cycle Li-O2 batteries. ACS Nano 12(1):128–139. https://doi.org/10.1021/acsnano.7b03794

    Article  CAS  PubMed  Google Scholar 

  34. Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC (2011) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Ce and Ni. Appl Surf Sci 257(7):2717–2730. https://doi.org/10.1016/j.apsusc.2010.10.051

    Article  CAS  Google Scholar 

  35. Guo C, Li Y, Liao W, Liu Y, Li Z, Sun L, Chen C, Zhang J, Si Y, Li L (2018) Boosting the oxygen reduction activity of a three-dimensional network Co–N–C electrocatalyst via space-confined control of nitrogen-doping efficiency and the molecular-level coordination effect. J Mater Chem A 6(27):13050–13061. https://doi.org/10.1039/c8ta03759k

    Article  CAS  Google Scholar 

  36. Jie S, Chen Y, Yang C, Lin X, Zhu R, Liu Z (2017) Co-N-C catalysts supported on mesoporous carbon with tailorable pore sizes for selective oxidation of arylalkanes. Catal Commun 100:144–147. https://doi.org/10.1016/j.catcom.2017.06.039

    Article  CAS  Google Scholar 

  37. Li J, Chen C, Qin F, Jiang Y, An H, Fang J, Zhang K, Lai Y (2018) Mesoporous Co–N–C composite as a sulfur host for high-capacity and long-life lithium–sulfur batteries. J Mater Sci 53(18):13143–13155. https://doi.org/10.1007/s10853-018-2566-z

    Article  CAS  Google Scholar 

  38. Khabashesku VN, Zimmerman JL, Margrave JL (2000) Powder synthesis and characterization of amorphous carbon nitride. Chem Mater 12(11):3264–3270

    Article  CAS  Google Scholar 

  39. Chen P, Li K, Yu Y, Zhang W (2017) Cobalt-doped graphitic carbon nitride photocatalysts with high activity for hydrogen evolution. Appl Surf Sci 392:608–615. https://doi.org/10.1016/j.apsusc.2016.09.086

    Article  CAS  Google Scholar 

  40. Verma F, Shukla P, Bhardiya SR, Singh M, Rai A, Rai VK (2019) Visible light-induced direct conversion of aldehydes into nitriles in aqueous medium using Co@g-C3N4 as photocatalyst. Catal Commun 119:76–81. https://doi.org/10.1016/j.catcom.2018.10.031

    Article  CAS  Google Scholar 

  41. Wang F, Wang Y, Feng Y, Zeng Y, Xie Z, Zhang Q, Su Y, Chen P, Liu Y, Yao K, Lv W, Liu G (2018) Novel ternary photocatalyst of single atom-dispersed silver and carbon quantum dots co-loaded with ultrathin g-C3N4 for broad spectrum photocatalytic degradation of naproxen. Appl Catal B 221:510–520. https://doi.org/10.1016/j.apcatb.2017.09.055

    Article  CAS  Google Scholar 

  42. Lee JH, Park MJ, Yoo SJ, Jang JH, Kim HJ, Nam SW, Yoon CW, Kim JY (2015) A highly active and durable Co-N-C electrocatalyst synthesized using exfoliated graphitic carbon nitride nanosheets. Nanoscale 7(23):10334–10339. https://doi.org/10.1039/c5nr01584g

    Article  CAS  PubMed  Google Scholar 

  43. Guo S, Yang Y, Liu N, Qiao S, Huang H, Liu Y, Kang Z (2016) One-step synthesis of cobalt, nitrogen-codoped carbon as nonprecious bifunctional electrocatalyst for oxygen reduction and evolution reactions. Sci Bull 61(1):68–77. https://doi.org/10.1007/s11434-015-0978-6

    Article  CAS  Google Scholar 

  44. Qiu B, Yang C, Guo W, Xu Y, Liang Z, Ma D, Zou R (2017) Highly dispersed Co-based Fischer-Tropsch synthesis catalysts from metal–organic frameworks. J Mater Chem A 5(17):8081–8086. https://doi.org/10.1039/c7ta02128c

    Article  CAS  Google Scholar 

  45. Chao S, Bai Z, Cui Q, Yan H, Wang K, Yang L (2015) Hollowed-out octahedral Co/N-codoped carbon as a highly efficient non-precious metal catalyst for oxygen reduction reaction. Carbon 82:77–86. https://doi.org/10.1016/j.carbon.2014.10.034

    Article  CAS  Google Scholar 

  46. Fu L, Chen Y, Liu Z (2015) Cobalt catalysts embedded in N-doped carbon derived from cobalt porphyrin via a one-pot method for ethylbenzene oxidation. J Mol Catal A 408:91–97. https://doi.org/10.1016/j.molcata.2015.07.011

    Article  CAS  Google Scholar 

  47. Li Y, Fan J, Zhang J, Yang J, Yuan R, Chang J, Zheng M, Dong Q (2017) A honeycomb-like Co@N-C composite for ultrahigh sulfur loading Li-S batteries. ACS Nano 11(11):11417–11424. https://doi.org/10.1021/acsnano.7b06061

    Article  CAS  PubMed  Google Scholar 

  48. Xu J, Wang Y, Shang J, Ma D, Li Y (2017) Preparation of mesoporous carbon nitride materials using urea and formaldehyde as precursors and catalytic application as solid bases. Appl Catal A 538:221–229. https://doi.org/10.1016/j.apcata.2017.03.035

    Article  CAS  Google Scholar 

  49. Tan M, Li P, Zheng J, Noritatsu T, Wu M (2016) Preparation and modification of high performance porous carbons from petroleum coke for use as supercapacitor electrodes. New Carbon Mater 31(3):343–351. https://doi.org/10.1016/s1872-5805(16)60018-5

    Article  Google Scholar 

  50. Xiong W, Wang Z, He S, Hao F, Yang Y, Lv Y, Zhang W, Liu P, Ha L (2020) Nitrogen-doped carbon nanotubes as a highly active metal-free catalyst for nitrobenzene hydrogenation. Appl Catal B 260:118105. https://doi.org/10.1016/j.apcatb.2019.118105

    Article  CAS  Google Scholar 

  51. Qin L, Wang L, Wang C, Yang X, Lv B (2019) Enhanced role of graphitic-N on nitrogen-doped porous carbon ball for direct dehydrogenation of ethylbenzene. Mol Catal 462:61–68. https://doi.org/10.1016/j.mcat.2018.10.021

    Article  CAS  Google Scholar 

  52. Shan J, Sun X, Zheng S, Wang T, Zhang X, Li G (2019) Graphitic N-dominated nitrogen-doped carbon nanotubes as efficient metal-free catalysts for hydrogenation of nitroarenes. Carbon 146:60–69. https://doi.org/10.1016/j.carbon.2019.01.103

    Article  CAS  Google Scholar 

  53. Rostami A, Ahmad-Jangi F (2011) Sulfamic acid: An efficient, cost-effective and green catalyst for crossed-aldol condensation of ketones with aromatic aldehydes under solvent-free. Chin Chem Lett 22(9):1029–1032. https://doi.org/10.1016/j.cclet.2011.03.015

    Article  CAS  Google Scholar 

  54. Zhu Y, Pan Y (2004) A new Lewis acid system palladium/TMSCl for catalytic aldol condensation of aldehydes with ketones. Chem Lett 33(6):668–669. https://doi.org/10.1246/cl.2004.668

    Article  CAS  Google Scholar 

  55. Roelofs JCAA, van Dillen AJ, de Jong KP (2000) Base-catalyzed condensation of citral and acetone at low temperature using modified hydrotalcite catalysts. Catal Today 60:297–303

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21878178).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1113 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Zhang, H., Wang, J. et al. Relationship between the structure and dehydrogenation of alcohols/hydrogenation of nitroarenes and base catalysis performance of Co–N–C catalyst. Reac Kinet Mech Cat 129, 865–881 (2020). https://doi.org/10.1007/s11144-020-01737-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01737-4

Keywords

Navigation