Skip to main content
Log in

Cobalt(III) hydride HAT mediated enantioselective intramolecular hydroamination access to chiral pyrrolidines

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Enantioenriched pyrrolidines and derivatives are ubiquitous substructures in compounds of importance to medicinal and biological chemistry. Herein, we report an efficient cobalt-catalyzed intramolecular asymmetric hydroamination reaction that produces chiral pyrrolidines with good to excellent yield and enantiocontrol. Compared with previously reported radical-involved methodologies for enantioenriched pyrrolidines, these conditions feature two elegant versatilities, enabling (1) the use of cobalt-catalyzed hydrogen atom transfer (HAT) to generate organocobalt intermediates that bring radical reaction to organometallic chemistry, and (2) enantioselective intramolecular C–N bond forging through an SN2-like displacement involving dynamic kinetic resolution (DKR). This approach provides a new alternative and efficient methodology for enantioselective radical-involved C–N bond construction that can be used in the synthesis of both chiral pyrrolidines and homologous nitrogen heterocycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cheng Y, Huang ZT, Wang MX. Curr Org Chem, 2004, 8: 325–351

    Article  CAS  Google Scholar 

  2. Taylor RD, MacCoss M, Lawson ADG. J Med Chem, 2014, 57: 5845–5859

    Article  CAS  PubMed  Google Scholar 

  3. Vitaku E, Smith DT, Njardarson JT. J Med Chem, 2014, 57: 10257–10274

    Article  CAS  PubMed  Google Scholar 

  4. Mukaiyama T, Asami M. Chiral pyrrolidine diamines as efficient ligands in asymmetric synthesis. In: Bayley H, Houk KN, Hughes G, et al., Eds. Organic Chemistry Topics in Current Chemistry. Vol. 127. Berlin, Heidelberg: Springer, 1985

    Google Scholar 

  5. MacMillan DWC. Nature, 2008, 455: 304–308

    Article  CAS  PubMed  Google Scholar 

  6. Mendes JA, Costa PRR, Yus M, Foubelo F, Buarque CD. Beilstein J Org Chem, 2021, 17: 1096–1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brown AR, Uyeda C, Brotherton CA, Jacobsen EN. J Am Chem Soc, 2013, 135: 6747–6749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Manna K, Xu S, Sadow AD. Angew Chem Int Ed, 2011, 50: 1865–1868

    Article  CAS  Google Scholar 

  9. Manna K, Eedugurala N, Sadow AD. J Am Chem Soc, 2015, 137: 425–435

    Article  CAS  PubMed  Google Scholar 

  10. Foster D, Gao P, Zhang Z, Sipos G, Sobolev AN, Nealon G, Falivene L, Cavallo L, Dorta R. Chem Sci, 2021, 12: 3751–3767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dai X, Engl OD, León T, Buchwald SL. Angew Chem Int Ed, 2019, 58: 3407–3411

    Article  CAS  Google Scholar 

  12. Nguyen HN, Lee H, Audörsch S, Reznichenko AL, Nawara-Hultzsch AJ, Schmidt B, Hultzsch KC. Organometallics, 2018, 37: 4358–4379

    Article  CAS  Google Scholar 

  13. Adrio J, Carretero JC. Chem Commun, 2019, 55: 11979–11991

    Article  CAS  Google Scholar 

  14. Hu Y, Lang K, Li C, Gill JB, Kim I, Lu H, Fields KB, Marshall MK, Cheng Q, Cui X, Wojtas L, Zhang XP. J Am Chem Soc, 2019, 141: 18160–18169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li XF, Lin JS, Wang J, Li ZL, Gu QS, Liu XY. Acta Chim Sin, 2018, 76: 878–882

    Article  CAS  Google Scholar 

  16. Wang FL, Dong XY, Lin JS, Zeng Y, Jiao GY, Gu QS, Guo XQ, Ma CL, Liu XY. Chem, 2017, 3: 979–990

    Article  CAS  Google Scholar 

  17. Liwosz TW, Chemler SR. JAm Chem Soc, 2012, 134: 2020–2023

    Article  CAS  Google Scholar 

  18. Shen X, Chen X, Chen J, Sun Y, Cheng Z, Lu Z. Nat Commun, 2020, 11: 783–790

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sun Y, Guo J, Shen X, Lu Z. Nat Commun, 2022, 13: 650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xu EY, Werth J, Roos CB, Bendelsmith AJ, Sigman MS, Knowles RR. J Am Chem Soc, 2022, 144: 18948–18958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Roos CB, Demaerel J, Graff DE, Knowles RR. JAm Chem Soc, 2020, 142: 5974–5979

    Article  CAS  Google Scholar 

  22. Xiong T, Zhang Q. Chem Soc Rev, 2016, 45: 3069–3087

    Article  CAS  PubMed  Google Scholar 

  23. Zhang G, Liang Y, Qin T, Xiong T, Liu S, Guan W, Zhang Q. CCS Chem, 2021, 3: 1737–1745

    Article  CAS  Google Scholar 

  24. Liang YJ, Sun MJ, Zhang G, Yin JJ, Guan W, Xiong T, Zhang Q. Chem Catal, 2022, 2: 2379–2390

    Article  CAS  Google Scholar 

  25. Shigehisa H, Aoki T, Yamaguchi S, Shimizu N, Hiroya K. JAm Chem Soc, 2013, 135: 10306–10309

    Article  CAS  Google Scholar 

  26. Shigehisa H, Koseki N, Shimizu N, Fujisawa M, Niitsu M, Hiroya K. J Am Chem Soc, 2014, 136: 13534–13537

    Article  CAS  PubMed  Google Scholar 

  27. Shigehisa H, Hayashi M, Ohkawa H, Suzuki T, Okayasu H, Mukai M, Yamazaki A, Kawai R, Kikuchi H, Satoh Y, Fukuyama A, Hiroya K. J Am Chem Soc, 2016, 138: 10597–10604

    Article  CAS  PubMed  Google Scholar 

  28. Zhou XL, Yang F, Sun HL, Yin YN, Ye WT, Zhu R. J Am Chem Soc, 2019, 141: 7250–7255

    Article  CAS  PubMed  Google Scholar 

  29. Date S, Hamasaki K, Sunagawa K, Koyama H, Sebe C, Hiroya K, Shigehisa H. ACS Catal, 2020, 10: 2039–2045

    Article  CAS  Google Scholar 

  30. Nagai T, Mimata N, Terada Y, Sebe C, Shigehisa H. Org Lett, 2020, 22: 5522–5527

    Article  CAS  PubMed  Google Scholar 

  31. Ohuchi S, Koyama H, Shigehisa H. ACS Catal, 2021, 11: 900–906

    Article  CAS  Google Scholar 

  32. Zhang XG, He ZX, Guo P, Chen Z, Ye KY. Org Lett, 2022, 24: 22–26

    Article  CAS  PubMed  Google Scholar 

  33. Yahata K, Kaneko Y, Akai S. Org Lett, 2020, 22: 598–603

    Article  CAS  PubMed  Google Scholar 

  34. Sun HL, Yang F, Ye WT, Wang JJ, Zhu R. ACS Catal, 2020, 10: 4983–4989

    Article  CAS  Google Scholar 

  35. Yang F, Nie YC, Liu HY, Zhang L, Mo F, Zhu R. ACS Catal, 2022, 12: 2132–2137

    Article  CAS  Google Scholar 

  36. Nakagawa M, Matsuki Y, Nagao K, Ohmiya H. J Am Chem Soc, 2022, 144: 7953–7959

    Article  CAS  PubMed  Google Scholar 

  37. Osato A, Fujihara T, Shigehisa H. ACS Catal, 2023, 13: 4101–4110

    Article  CAS  Google Scholar 

  38. Park SH, Bae G, Choi A, Shin S, Shin K, Choi CH, Kim H. J Am Chem Soc, 2023, 145: 15360–15369

    Article  CAS  PubMed  Google Scholar 

  39. Discolo CA, Touney EE, Pronin SV. J Am Chem Soc, 2019, 141: 17527–17532

    Article  CAS  PubMed  Google Scholar 

  40. Ebisawa K, Izumi K, Ooka Y, Kato H, Kanazawa S, Komatsu S, Nishi E, Shigehisa H. JAm Chem Soc, 2020, 142: 13481–13490

    Article  CAS  Google Scholar 

  41. Song L, Fu N, Ernst BG, Lee WH, Frederick MO, DiStasio Jr. RA, Lin S. Nat Chem, 2020, 12: 747–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Qin T, Lv G, Meng Q, Zhang G, Xiong T, Zhang Q. Angew Chem Int Ed, 2021, 60: 25949–25957

    Article  CAS  Google Scholar 

  43. Qin T, Lv G, Miao H, Guan M, Xu C, Zhang G, Xiong T, Zhang Q. Angew Chem Int Ed, 2022, 61: e202201967

    Article  CAS  Google Scholar 

  44. Miao H, Guan M, Xiong T, Zhang G, Zhang Q. Angew Chem Int Ed, 2023, 62: e202213913

    Article  CAS  Google Scholar 

  45. Li ZL, Fang GC, Gu QS, Liu XY. Chem Soc Rev, 2020, 49: 32–48

    Article  CAS  PubMed  Google Scholar 

  46. Fu GC. ACS Cent Sci, 2017, 3: 692–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ge L, Zhou H, Chiou MF, Jiang H, Jian W, Ye C, Li X, Zhu X, Xiong H, Li Y, Song L, Zhang X, Bao H. Nat Catal, 2021, 4: 28–35

    Article  CAS  Google Scholar 

  48. Fukuzumi S, Miyamoto K, Suenobu T, Caemelbecke EV, Kadish KM. J Am Chem Soc, 1998, 120: 2880–2889

    Article  CAS  Google Scholar 

  49. Green SA, Matos JLM, Yagi A, Shenvi RA. J Am Chem Soc, 2016, 138: 12779–12782

    Article  CAS  PubMed  Google Scholar 

  50. Shevick SL, Obradors C, Shenvi RA. J Am Chem Soc, 2018, 140: 12056–12068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Abley P, Dockal ER, Halpern J. JAm Chem Soc, 1972, 94: 659–660

    Article  CAS  Google Scholar 

  52. Halpern J, Chan MS, Hanson J, Roche TS, Topich JA. J Am Chem Soc, 1975, 97: 1606–1608

    Article  CAS  Google Scholar 

  53. Wilson CV, Kim D, Sharma A, Hooper RX, Poli R, Hoffman BM, Holland PL. J Am Chem Soc, 2022, 144: 10361–10367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lande SS, Kochi JK. J Am Chem Soc, 1968, 90: 5196–5207

    Article  CAS  Google Scholar 

  55. Anderson SN, Ballard DH, Chrzastowski JZ, Dodd D, Johnson MD. J Chem Soc Chem Commun, 1972, 0: 685–686

    Article  CAS  Google Scholar 

  56. Tsou TT, Loots M, Halpern J. J Am Chem Soc, 1982, 104: 623–624

    Article  CAS  Google Scholar 

  57. Zhu X, Li Y, Bao H. Chin J Chem, 2023, 41: 3097–3114

    Article  CAS  Google Scholar 

  58. Calderone CT, Williams DH. J Am Chem Soc, 2001, 123: 6262–6267

    Article  CAS  PubMed  Google Scholar 

  59. Li S, Bruin B, Peng CH, Fryd M, Wayland BB. J Am Chem Soc, 2008, 130: 13373–13381

    Article  CAS  PubMed  Google Scholar 

  60. Koenig TW, Hay BP, Finke RG. Polyhedron, 1988, 7: 1499–1516

    Article  CAS  Google Scholar 

  61. Zhang G, Zhang Q. Chem Catal, 2023, 3: 100526

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22171043, 22193012, 221831002), the Fundamental Research Funds for the Central Universities-Excellent Youth Team Program (2412023YQ001), and Ten Thousand Talents Program for generous financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ge Zhang or Qian Zhang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Q., Qin, T., Miao, H. et al. Cobalt(III) hydride HAT mediated enantioselective intramolecular hydroamination access to chiral pyrrolidines. Sci. China Chem. 67, 2002–2008 (2024). https://doi.org/10.1007/s11426-023-1882-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1882-5

Navigation