Skip to main content
Log in

Microemulsion-mediated hydrothermal synthesis of flower-like MoS2 nanomaterials with enhanced catalytic activities for anthracene hydrogenation

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Flower-like intercalated MoS2 nanomaterials have been successfully synthesized via a microemulsionmediated hydrothermal (MMH) method, and characterized by X-ray diffraction, Raman spectroscopy, element analysis, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy in detail. Their catalytic performance for anthracene hydrogenation was evaluated using a slurry-bed batch reactor with an initial hydrogen pressure of 80 bar at 350 °C for 4 h. The intercalated MoS2 nanoflowers synthesized from Na2MoO4 (MoS2-S) and H2MoO4 (MoS2-A) as molybdenum precursors have diameters of about 150 and 50 nm, respectively. MoS2 nanosheets on MoS2-S and MoS2-A possess stacking layer numbers of 5–10 and 2–5, and slab lengths of about 15 and 10 nm, respectively. The interlayer distances of MoS2-S and MoS2-A are both enlarged from 0.62 nm to about 0.95 nm due to the intercalation of NH4 + and surfactant molecules. The MoS2 nanoflowers have high catalytic activities for anthracene hydrogenation. The selectivity for octahydroanthracene, a deeply hydrogenated product, over MoS2-A is 89.8%, which is 31.0 times higher than that over commercial bulk MoS2. Fully hydrogenated product (perhydroanthracene) was also detected over MoS2 nanoflowers with a selectivity of 3.7%. The enhanced hydrogenation activities of MoS2 nanoflowers can be ascribed to the high exposure of catalytic active sites, resulting from the smaller particle size, fewer stacking layer, shorter slab length and enlarged interlayer distance of MoS2 nanoflowers compared with commercial bulk MoS2. In addition, a possible growth mechanism of MoS2 nanoflowers synthesized via the MMH method was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hershfinkel M, Gheber L A, Volterra V, Hutchison J L, Margulis L, Tenne R. Nested polyhedra of MX3 (M = W, Mo; X = S, Se) probed by high-resolution electron microscopy and scanning tunneling microscopy. Journal of the American Chemical Society, 1994, 116 (5): 1914–1917

    Article  CAS  Google Scholar 

  2. Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chemistry, 2013, 5(4): 263–275

    Article  Google Scholar 

  3. Bano S, Ahmad S, Woo S, Saleem F. Heavy oil hydroprocessing: Effect of nanostructured morphologies of MoS2 as catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2015, 114(2): 473–487

    Article  CAS  Google Scholar 

  4. Deng D, Novoselov K S, Fu Q, Zheng N, Tian Z, Bao X. Catalysis with two-dimensional materials and their heterostructures. Nature Nanotechnology, 2016, 11(3): 218–230

    Article  CAS  Google Scholar 

  5. Daage M, Chianelli R R. Structure-function relations in molybdenum sulfide catalysts—the rim-edge model. Journal of Catalysis, 1994, 149(2): 414–427

    Article  CAS  Google Scholar 

  6. Zhang N, Li H, Yu K, Zhu Z. Differently structured MoS2 for the hydrogen production application and a mechanism investigation. Journal of Alloys and Compounds, 2016, 685: 65–69

    Article  CAS  Google Scholar 

  7. Iwata Y, Araki Y, Honna K, Miki Y, Sato K, Shimada H. Hydrogenation active sites of unsupported molybdenum sulfide catalysts for hydroprocessing heavy oils. Catalysis Today, 2001, 65 (2): 335–341

    Article  CAS  Google Scholar 

  8. Li Z, He J,Wang H,Wang B, Ma X. Enhanced methanation stability of nano-sized MoS2 catalysts by adding Al2O3. Frontiers of Chemical Science and Engineering, 2015, 9(1): 33–39

    Article  CAS  Google Scholar 

  9. Salvatore G A, Münzenrieder N, Barraud C, Petti L, Zysset C, Büthe L, Ensslin K, Tröster G. Fabrication and transfer of flexible fewlayers MoS2 thin film transistors to any arbitrary substrate. ACS Nano, 2013, 7(10): 8809–8815

    Article  CAS  Google Scholar 

  10. Zheng J, Zhang H, Dong S, Liu Y, Tai Nai C, Suk Shin H, Young Jeong H, Liu B, Ping Loh K. High yield exfoliation of twodimensional chalcogenides using sodium naphthalenide. Nature Communications, 2014, 5: 2995

    Google Scholar 

  11. Nath M, Govindaraj A, Rao C N R. Simple synthesis of MoS2 and WS2 nanotubes. Advanced Materials, 2001, 13(4): 283–286

    Article  CAS  Google Scholar 

  12. Lee Y H, Zhang X Q, Zhang W, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T W, Chang C S, Li L J, Lin T W. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Advanced Materials, 2012, 24(17): 2320–2325

    Article  CAS  Google Scholar 

  13. Sheng B, Liu J, Li Z, Wang M, Zhu K, Qiu J, Wang J. Effects of excess sulfur source on the formation and photocatalytic properties of flower-like MoS2 spheres by hydrothermal synthesis. Materials Letters, 2015, 144: 153–156

    Article  CAS  Google Scholar 

  14. Liu M, Li X, Xu Z, Li B, Chen L, Shan N. Synthesis of chain-like MoS2 nanoparticles in W/O reverse microemulsion and application in photocatalysis. Chinese Science Bulletin, 2012, 57(30): 3862–3866

    Article  CAS  Google Scholar 

  15. Gong H, Zheng F, Li Z, Li Y, Hu P, Gong Y, Song S, Zhan F, Zhen Q. Hydrothermal preparation of MoS2 nanoflake arrays on Cu foil with enhanced supercapacitive property. Electrochimica Acta, 2017, 227: 101–109

    Article  CAS  Google Scholar 

  16. Ye L, Wu C, Guo W, Xie Y. MoS2 hierarchical hollow cubic cages assembled by bilayers: One-step synthesis and their electrochemical hydrogen storage properties. Chemical Communications, 2006, 45 (45): 4738–4740

    Article  Google Scholar 

  17. Lu X, Lin Y, Dong H, Dai W, Chen X, Qu X, Zhang X. One-step hydrothermal fabrication of three-dimensional MoS2 nanoflower using polypyrrole as template for efficient hydrogen evolution reaction. Scientific Reports, 2017, 7: 42309

    Article  CAS  Google Scholar 

  18. Akram H, Mateos-Pedrero C, Gallegos-Suárez E, Guerrero-Ruíz A, Chafik T, Rodríguez-Ramos I. Effect of electrolytes nature and concentration on the morphology and structure of MoS2 nanomaterials prepared using one-pot solvothermal method. Applied Surface Science, 2014, 307(2): 319–326

    Article  CAS  Google Scholar 

  19. Li M, Wang D, Li J, Pan Z, Ma H, Jiang Y, Tian Z, Lu A. Surfactantassisted hydrothermally synthesized MoS2 samples with controllable morphologies and structures for anthracene hydrogenation. Chinese Journal of Catalysis, 2017, 38(3): 597–606

    Article  CAS  Google Scholar 

  20. Yan Y, Xia B, Ge X, Liu Z, Wang J, Wang X. Ultrathin MoS2 nanoplates with rich active sites as highly efficient catalyst for hydrogen evolution. ACS Applied Materials & Interfaces, 2013, 5 (24): 12794–12798

    Article  CAS  Google Scholar 

  21. Chikan V, Kelley D F. Size-dependent spectroscopy of MoS2 nanoclusters. Journal of Physical Chemistry B, 2002, 106(15): 3794–3804

    Article  CAS  Google Scholar 

  22. Yu H, Liu Y, Brock S L. Synthesis of discrete and dispersible MoS2 nanocrystals. Inorganic Chemistry, 2008, 47(5): 1428–1434

    Article  CAS  Google Scholar 

  23. Xiong Y, Xie Y, Li Z, Li X, Zhang R. Micelle-assisted fabrication of necklace-shaped assembly of inorganic fullerene-like molybdenum disulfide nanospheres. Chemical Physics Letters, 2003, 382(1-2): 180–185

    Article  CAS  Google Scholar 

  24. Marchand K, Tarret M, Lechaire J, Normand L, Kasztelan S, Cseri T. Investigation of AOT-based microemulsions for the controlled synthesis of MoSx nanoparticles: An electron microscopy study. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2003, 214(1): 239–248

    Article  CAS  Google Scholar 

  25. Ganguli A K, Ganguly A, Vaidya S. Microemulsion-based synthesis of nanocrystalline materials. Chemical Society Reviews, 2010, 39 (2): 474–485

    Article  CAS  Google Scholar 

  26. Wu M, Long J, Huang A, Luo Y, Feng S, Xu R. Microemulsionmediated hydrothermal synthesis and characterization of nanosize rutile and anatase particles. Langmuir, 1999, 15(26): 8822–8825

    Article  CAS  Google Scholar 

  27. Yang L, Liu L, Xiao D, Zhu J. Preparation and characterization of ZnSe nanocrystals by a microemulsion-mediated method. Materials Letters, 2012, 72: 113–115

    Article  CAS  Google Scholar 

  28. Yin J, Lu X, Dong Q. The experiment and theory studies of silver substituting cadmium in CdS quantum dots. Journal of Alloys and Compounds, 2017, 695: 1301–1306

    Article  CAS  Google Scholar 

  29. Gao M R, Chan M K Y, Sun Y. Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production. Nature Communications, 2015, 6: 7493

    Article  Google Scholar 

  30. Li J, Wang D, Ma H, Pan Z, Jiang Y, Li M, Tian Z. Ionic liquid assisted hydrothermal synthesis of hollow core/shell MoS2 microspheres. Materials Letters, 2015, 160: 550–554

    Article  CAS  Google Scholar 

  31. Li M, Wang D, Li J, Pan Z, Ma H, Jiang Y, Tian Z. Facile hydrothermal synthesis of MoS2 nano-sheets with controllable structures and enhanced catalytic performance for anthracene hydrogenation. RSC Advances, 2016, 6(75): 71534–71542

    Article  CAS  Google Scholar 

  32. Wu Z, Tang C, Zhou P, Liu Z, Xu Y, Wang D, Fang B. Enhanced hydrogen evolution catalysis from osmotically swollen ammoniated MoS2. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(24): 13050–13056

    Article  CAS  Google Scholar 

  33. Anto Jeffery A, Nethravathi C, Rajamathi M. Two-dimensional nanosheets and layered hybrids of MoS2 and WS2 through exfoliation of ammoniated MS2 (M = Mo,W). Journal of Physical Chemistry C, 2014, 118(2): 1386–1396

    Article  CAS  Google Scholar 

  34. Matusinovic Z, Shukla R, Manias E, Hogshead C G, Wilkie C A. Polystyrene/molybdenum disulfide and poly(methyl methacrylate)/ molybdenum disulfide nanocomposites with enhanced thermal stability. Polymer Degradation & Stability, 2012, 97(12): 2481–2486

    Article  CAS  Google Scholar 

  35. Frey G L, Tenne R, MatthewsMJ, DresselhausMS, Dresselhaus G. Raman and resonance Raman investigation of MoS2 nanoparticles. Physical Review B: Condensed Matter and Materials Physics, 1999, 60(4): 2883–2892

    Article  CAS  Google Scholar 

  36. Wang Z, Ma L, Chen W, Huang G, Chen D,Wang L, Lee J Y. Facile synthesis of MoS2/graphene composites: Effects of different cationic surfactants on microstructures and electrochemical properties of reversible lithium storage. RSC Advances, 2013, 3(44): 21675–21684

    Article  CAS  Google Scholar 

  37. Ramakrishna Matte H S S, Gomathi A, Manna A K, Late D J, Datta R, Pati S K, Rao C N R. MoS2 and WS2 analogues of graphene. Angewandte Chemie International Edition, 2010, 49(24): 4059–4062

    Article  Google Scholar 

  38. Koroteev V O, Bulusheva L G, Asanov I P, Shlyakhova E V, Vyalikh D V, Okotrub A V. Charge transfer in the MoS2/Carbon nanotube composite. Journal of Physical Chemistry C, 2011, 115 (43): 21199–21204

    Article  CAS  Google Scholar 

  39. Lee C, Yan H, Brus L E, Heinz T F, Hone J, Ryu S. Anomalous lattice vibrations of single-and few-layer MoS2. ACS Nano, 2010, 4 (5): 2695–2700

    Article  CAS  Google Scholar 

  40. Nogueira A, Znaiguia R, Uzio D, Afanasiev P, Berhault G. Curved nanostructures of unsupported and Al2O3-supported MoS2 catalysts: Synthesis and HDS catalytic properties. Applied Catalysis A, General, 2012, 429–430: 92–105

    Article  Google Scholar 

  41. Iwata Y, Sato K, Yoneda T, Miki Y, Sugimoto Y, Nishijima A, Shimada H. Catalytic functionality of unsupported molybdenum sulfide catalysts prepared with different methods. Catalysis Today, 1998, 45(1-4): 353–359

    Article  CAS  Google Scholar 

  42. Bellussi G, Rispoli G, Molinari D, Landoni A, Pollesel P, Panariti N, Millini R, Montanari E. The role of MoS2 nano-slabs in the protection of solid cracking catalysts for the total conversion of heavy oils to good quality distillates. Catalysis Science & Technology, 2013, 3(1): 176–182

    Article  CAS  Google Scholar 

  43. Zhou K, Jiang S, Bao C, Song L, Wang B, Tang G, Hu Y, Gui Z. Preparation of poly(vinyl alcohol) nanocomposites with molybdenum disulfide (MoS2): Structural characteristics and markedly enhanced properties. RSC Advances, 2012, 2(31): 11695–11703

    Article  CAS  Google Scholar 

  44. Zhou K, Liu J, Wang B, Zhang Q, Shi Y, Jiang S, Hu Y, Gui Z. Facile preparation of poly(methyl methacrylate)/MoS2 nanocomposites via in situ emulsion polymerization. Materials Letters, 2014, 126: 159–161

    Article  CAS  Google Scholar 

  45. Barzegar-Bafrooei H, Ebadzadeh T, Tazike M. A survey on dispersion mechanisms of multi-walled carbon nanotubes in an aqueous media by UV-Vis, raman spectroscopy, TGA, and FTIR. Journal of Dispersion Science and Technology, 2012, 33(7): 955–959

    Article  CAS  Google Scholar 

  46. Boyjoo Y, Wang M, Pareek V K, Liu J, Jaroniec M. Synthesis and applications of porous non-silica metal oxide submicrospheres. Chemical Society Reviews, 2016, 45(21): 6013–6047

    Article  CAS  Google Scholar 

  47. Yang T, Ling H, Lamonier J F, Jaroniec M, Huang J, Monteiro M J, Liu J. A synthetic strategy for carbon nanospheres impregnated with highly monodispersed metal nanoparticles. NPG Asia Materials, 2016, 8(2): e240

    Article  CAS  Google Scholar 

  48. Pinilla J L, Purón H, Torres D, Suelves I, Millan M. Ni-MoS2 supported on carbon nanofibers as hydrogenation catalysts: Effect of support functionalisation. Carbon, 2015, 81: 574–586

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA07020300) and the National Natural Science Foundation of China (Grant No. 21303186).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijian Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Wang, D., Pan, Z. et al. Microemulsion-mediated hydrothermal synthesis of flower-like MoS2 nanomaterials with enhanced catalytic activities for anthracene hydrogenation. Front. Chem. Sci. Eng. 12, 32–42 (2018). https://doi.org/10.1007/s11705-017-1677-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-017-1677-4

Keywords

Navigation