Frontiers of Chemical Science and Engineering

, Volume 10, Issue 4, pp 509–516 | Cite as

Oil bleed from elastomeric thermal silicone conductive pads

  • Yuqi Chen
  • Yakai Feng
  • Jingqi Zhao
  • Jingbo Shen
  • Menghuang Feng
Research Article

Abstract

Oil bleed is a serious problem in elastomeric thermal silicone conductive pads. The components of the oil bleed and the effect of the silicone chemical parameters on the amount of oil bleed have been determined. The main components of oil bleeds are the uncrosslinked silicones in the cured resins, which include the unreacted silicone materials and the macromolecular substances produced by the hydrosilylation reaction. Cured resins with a high crosslinking density and a high molecular weight of vinyl silicone residues had a lower amount of oil bleed. In addition, a low Si-H content also reduced the amount of oil bleed.

Keywords

oil bleed crosslinking density molecular weight vinyl silicones hydrosilicones 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sim L C, Ramanan S R, Ismail H, Seetharamu K N, Goh T J. Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes. Thermochimica Acta, 2005, 430(1-2): 155–165CrossRefGoogle Scholar
  2. 2.
    Rachel G. Thermal interface materials: Opportunities and challenges for developers. Translational Materials Research, 2015, 2(2): 020301CrossRefGoogle Scholar
  3. 3.
    Kim E S, Kim E J, Shim J H, Yoon J S. Thermal stability and ablation properties of silicone rubber composites. Journal of Applied Polymer Science, 2008, 110(2): 1263–1270CrossRefGoogle Scholar
  4. 4.
    Jiang Q, Wang X, Zhu Y T, Hui D, Qiu Y P. Mechanical, electrical and thermal properties of aligned carbon nanotube/polyimide composites. Composites. Part B, Engineering, 2014, 56: 408–412CrossRefGoogle Scholar
  5. 5.
    Crawford B, Doherty A P, Spedding P L, Herron W, Proctor M. Viscosity of siloxane gum and silicone rubbers. Asia-Pacific Journal of Chemical Engineering, 2010, 5(6): 882–894CrossRefGoogle Scholar
  6. 6.
    Salam M H, El-Gamal S, El-Maqsoud D M, Abd Mohsen M. Correlation of electrical and swelling properties with nano freevolume structure of conductive silicone rubber composites. Polymer Composites, 2013, 34(12): 2105–2115CrossRefGoogle Scholar
  7. 7.
    Zha J W, Zhu Y H, Li W K, Bai J B, Dang Z M. Low dielectric permittivity and high thermal conductivity silicone rubber composites with micro-nano-sized particles. Applied Physics Letters, 2012, 101(6): 062905CrossRefGoogle Scholar
  8. 8.
    Zhou W Y, Wang C F, An Q L, Ou H Y. Thermal properties of heat conductive silicone rubber filled with hybrid fillers. Journal of Composite Materials, 2008, 42(2): 173–187CrossRefGoogle Scholar
  9. 9.
    Chen L F, Xie H Q. Silicon oil based multiwalled carbon nanotubes nanofluid with optimized thermal conductivity enhancement. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2009, 352(1-3): 136–140CrossRefGoogle Scholar
  10. 10.
    Kemaloglu S, Ozkoc G, Aytac A. Properties of thermally conductive micro and nano size boron nitride reinforced silicon rubber composites. Thermochimica Acta, 2010, 499(1-2): 40–47CrossRefGoogle Scholar
  11. 11.
    Cheng J P, Liu T, Zhang J, Wang B B, Ying J, Liu F, Zhang X B. Influence of phase and morphology on thermal conductivity of alumina particle/silicone rubber composites. Applied Physics. A, Materials Science & Processing, 2014, 117(4): 1985–1992CrossRefGoogle Scholar
  12. 12.
    Mi Y N, Liang G Z, Gu A J, Zhao F P, Yuan L. Thermally conductive aluminum nitride-multiwalled carbon nanotube/cyanate ester composites with high flame retardancy and low dielectric loss. Industrial & Engineering Chemistry Research, 2013, 52(9): 3342–3353CrossRefGoogle Scholar
  13. 13.
    Li T, Chen J, Dai H Y, Liu D W, Xiang H W, Chen Z P. Dielectric properties of CaCu3Ti4O12-silicone rubber composites. Journal of Materials Science Materials in Electronics, 2015, 26(1): 312–316CrossRefGoogle Scholar
  14. 14.
    Paul D R, Mark J E. Fillers for polysiloxane (“silicone”) elastomers. Progress in Polymer Science, 2010, 35(7): 893–901CrossRefGoogle Scholar
  15. 15.
    Mu Q H, Feng S G, Diao G Z. Thermal conductivity of silicone rubber filled with ZnO. Polymer Composites, 2007, 28(2): 125–130CrossRefGoogle Scholar
  16. 16.
    Ventura I A, Rahaman A, Lubineau G. The thermal properties of a carbon nanotube-enriched epoxy: Thermal conductivity, curing, and degradation kinetics. Journal of Applied Polymer Science, 2013, 130(4): 2722–2733CrossRefGoogle Scholar
  17. 17.
    Wang X J, Zhang L Z, Pei L X. Thermal conductivity augmentation of composite polymer materials with artificially controlled filler shapes. Journal of Applied Polymer Science, 2014, 131(8): 39550Google Scholar
  18. 18.
    Gan L, Shang S M, Yuen M C W, Jiang S X, Luo N M. Facile preparation of graphene nanoribbon filled silicone rubber nanocomposite with improved thermal and mechanical properties. Composites. Part B, Engineering, 2015, 69: 237–242CrossRefGoogle Scholar
  19. 19.
    Ionita M, Pandele A M, Crica L, Pilan L. Improving the thermal and mechanical properties of polysulfone by incorporation of graphene oxide. Composites. Part B, Engineering, 2014, 59: 133–139CrossRefGoogle Scholar
  20. 20.
    Ji T, Zhang L Q, Wang W C, Liu Y, Zhang X F, Lu Y L. Cold plasma modification of boron nitride fillers and its effect on the thermal conductivity of silicone rubber/boron nitride composites. Polymer Composites, 2012, 33(9): 1473–1481CrossRefGoogle Scholar
  21. 21.
    Wu L K, Ying J, Chen L T. Improvement of thermal conductivity of silicone by carbon nanotube array (CNTA). Advanced Materials Research, 2014, 1061-1062: 96–99CrossRefGoogle Scholar
  22. 22.
    Zhou WY, Qi S H, Tu C C, Zhao H Z, Wang C F, Kou J L. Effect of the particle size of Al2O3 on the properties of filled heat-conductive silicone rubber. Journal of Applied Polymer Science, 2007, 104(2): 1312–1318CrossRefGoogle Scholar
  23. 23.
    Zhou W Y, Yu D M, Wang C F, An Q L, Qi S H. Effect of filler size distribution on the mechanical and physical properties of aluminafilled silicone rubber. Polymer Engineering and Science, 2008, 48(7): 1381–1388CrossRefGoogle Scholar
  24. 24.
    Zhou W Y, Qi S H, Zhao H Z, Liu N L. Thermally conductive silicone rubber reinforced with boron nitride particle. Polymer Composites, 2007, 28(1): 23–28CrossRefGoogle Scholar
  25. 25.
    Zou H, Zhang L Q, Tian M, Wu S Z, Zhao S H. Study on the structure and properties of conductive silicone rubber filled with nickel-coated graphite. Journal of Applied Polymer Science, 2010, 115(5): 2710–2717CrossRefGoogle Scholar
  26. 26.
    René S, Stefan R L, Katrin A, Martina B, André B, Thomas G. Transparent silicone calcium fluoride nanocomposite with improved thermal conductivity. Macromolecular Materials and Engineering, 2015, 300(1): 80–85CrossRefGoogle Scholar
  27. 27.
    Shang S M, Gan L, Yuen M C W, Jiang S X, Luo M N. Carbon nanotubes based high temperature vulcanized silicone rubber nanocomposite with excellent elasticity and electrical properties. Composites. Part A, Applied Science and Manufacturing, 2014, 66: 135–141CrossRefGoogle Scholar
  28. 28.
    Das A, Kasaliwal G R, Jurk R, Boldt R, Fischer D, Stöckelhuber K W, Heinrich G. Rubber composites based on graphene nanoplatelets, expanded graphite, carbon nanotubes and their combination: A comparative study. Composites Science and Technology, 2012, 72(16): 1961–1967CrossRefGoogle Scholar
  29. 29.
    Wang Q, Gao W, Xie Z M. Highly thermally conductive roomtemperature-vulcanized silicone rubber and silicone grease. Journal of Applied Polymer Science, 2003, 89(9): 2397–2399CrossRefGoogle Scholar
  30. 30.
    Stein J, Lewis L N, Gao Y, Scott R A. In situ determination of the active catalyst in hydrosilylation reactions using highly reactive Pt (0) catalyst precursors. Journal of the American Chemical Society, 1999, 121(15): 3693–3703CrossRefGoogle Scholar
  31. 31.
    Lweis L N, Colborn R E, Grade H, Bryant G L, Sumpter C A, Scott R A. Mechanism of formation of platinum(0) complexes containing silicon-vinyl ligands. Organometallics, 1995, 14(5): 2202–2213CrossRefGoogle Scholar
  32. 32.
    Zhao M, Feng Y K, Li G, Li Y, Wang Y L, Han Y, Sun X J, Tan X H. Synthesis of an adhesion-enhancing polysiloxane containing epoxy groups for addition-cure silicone light emitting diodes encapsulant. Polymers for Advanced Technologies, 2014, 25(9): 927–933CrossRefGoogle Scholar
  33. 33.
    Zhao M, Feng Y K, Li G, Li Y, Wang Y L, Han Y, Sun X J, Tan X H. Preparation and performance of phenyl-vinyl-POSS/additiontype curable silicone rubber hybrid material. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 2014, 51(8): 639–645CrossRefGoogle Scholar
  34. 34.
    Zhao M, Feng Y K, Li G, Li Y, Wang Y L, Han Y, Sun X J, Tan X H. Fabrication of siloxane hybrid material with high adhesion and high refractive index for light emitting diodes (LEDs) encapsulation. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 2014, 51(8): 653–658CrossRefGoogle Scholar
  35. 35.
    Gan L, Shang S M, Jiang S X. Impact of vinyl concentration of a silicone rubber on the properties of the graphene oxide filled silicone rubber composites. Composites. Part B, Engineering, 2016, 84: 294–300CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Yuqi Chen
    • 1
  • Yakai Feng
    • 1
    • 2
  • Jingqi Zhao
    • 3
  • Jingbo Shen
    • 3
  • Menghuang Feng
    • 3
  1. 1.School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
  2. 2.Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)TianjinChina
  3. 3.Tianjin Laird Electronic Material Co., Ltd.TianjinChina

Personalised recommendations