Skip to main content
Log in

Oil bleed from elastomeric thermal silicone conductive pads

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Oil bleed is a serious problem in elastomeric thermal silicone conductive pads. The components of the oil bleed and the effect of the silicone chemical parameters on the amount of oil bleed have been determined. The main components of oil bleeds are the uncrosslinked silicones in the cured resins, which include the unreacted silicone materials and the macromolecular substances produced by the hydrosilylation reaction. Cured resins with a high crosslinking density and a high molecular weight of vinyl silicone residues had a lower amount of oil bleed. In addition, a low Si-H content also reduced the amount of oil bleed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sim L C, Ramanan S R, Ismail H, Seetharamu K N, Goh T J. Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes. Thermochimica Acta, 2005, 430(1-2): 155–165

    Article  CAS  Google Scholar 

  2. Rachel G. Thermal interface materials: Opportunities and challenges for developers. Translational Materials Research, 2015, 2(2): 020301

    Article  Google Scholar 

  3. Kim E S, Kim E J, Shim J H, Yoon J S. Thermal stability and ablation properties of silicone rubber composites. Journal of Applied Polymer Science, 2008, 110(2): 1263–1270

    Article  CAS  Google Scholar 

  4. Jiang Q, Wang X, Zhu Y T, Hui D, Qiu Y P. Mechanical, electrical and thermal properties of aligned carbon nanotube/polyimide composites. Composites. Part B, Engineering, 2014, 56: 408–412

    Article  CAS  Google Scholar 

  5. Crawford B, Doherty A P, Spedding P L, Herron W, Proctor M. Viscosity of siloxane gum and silicone rubbers. Asia-Pacific Journal of Chemical Engineering, 2010, 5(6): 882–894

    Article  CAS  Google Scholar 

  6. Salam M H, El-Gamal S, El-Maqsoud D M, Abd Mohsen M. Correlation of electrical and swelling properties with nano freevolume structure of conductive silicone rubber composites. Polymer Composites, 2013, 34(12): 2105–2115

    Article  CAS  Google Scholar 

  7. Zha J W, Zhu Y H, Li W K, Bai J B, Dang Z M. Low dielectric permittivity and high thermal conductivity silicone rubber composites with micro-nano-sized particles. Applied Physics Letters, 2012, 101(6): 062905

    Article  CAS  Google Scholar 

  8. Zhou W Y, Wang C F, An Q L, Ou H Y. Thermal properties of heat conductive silicone rubber filled with hybrid fillers. Journal of Composite Materials, 2008, 42(2): 173–187

    Article  CAS  Google Scholar 

  9. Chen L F, Xie H Q. Silicon oil based multiwalled carbon nanotubes nanofluid with optimized thermal conductivity enhancement. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2009, 352(1-3): 136–140

    Article  CAS  Google Scholar 

  10. Kemaloglu S, Ozkoc G, Aytac A. Properties of thermally conductive micro and nano size boron nitride reinforced silicon rubber composites. Thermochimica Acta, 2010, 499(1-2): 40–47

    Article  CAS  Google Scholar 

  11. Cheng J P, Liu T, Zhang J, Wang B B, Ying J, Liu F, Zhang X B. Influence of phase and morphology on thermal conductivity of alumina particle/silicone rubber composites. Applied Physics. A, Materials Science & Processing, 2014, 117(4): 1985–1992

    Article  CAS  Google Scholar 

  12. Mi Y N, Liang G Z, Gu A J, Zhao F P, Yuan L. Thermally conductive aluminum nitride-multiwalled carbon nanotube/cyanate ester composites with high flame retardancy and low dielectric loss. Industrial & Engineering Chemistry Research, 2013, 52(9): 3342–3353

    Article  CAS  Google Scholar 

  13. Li T, Chen J, Dai H Y, Liu D W, Xiang H W, Chen Z P. Dielectric properties of CaCu3Ti4O12-silicone rubber composites. Journal of Materials Science Materials in Electronics, 2015, 26(1): 312–316

    Article  CAS  Google Scholar 

  14. Paul D R, Mark J E. Fillers for polysiloxane (“silicone”) elastomers. Progress in Polymer Science, 2010, 35(7): 893–901

    Article  CAS  Google Scholar 

  15. Mu Q H, Feng S G, Diao G Z. Thermal conductivity of silicone rubber filled with ZnO. Polymer Composites, 2007, 28(2): 125–130

    Article  CAS  Google Scholar 

  16. Ventura I A, Rahaman A, Lubineau G. The thermal properties of a carbon nanotube-enriched epoxy: Thermal conductivity, curing, and degradation kinetics. Journal of Applied Polymer Science, 2013, 130(4): 2722–2733

    Article  CAS  Google Scholar 

  17. Wang X J, Zhang L Z, Pei L X. Thermal conductivity augmentation of composite polymer materials with artificially controlled filler shapes. Journal of Applied Polymer Science, 2014, 131(8): 39550

    Google Scholar 

  18. Gan L, Shang S M, Yuen M C W, Jiang S X, Luo N M. Facile preparation of graphene nanoribbon filled silicone rubber nanocomposite with improved thermal and mechanical properties. Composites. Part B, Engineering, 2015, 69: 237–242

    Article  CAS  Google Scholar 

  19. Ionita M, Pandele A M, Crica L, Pilan L. Improving the thermal and mechanical properties of polysulfone by incorporation of graphene oxide. Composites. Part B, Engineering, 2014, 59: 133–139

    Article  CAS  Google Scholar 

  20. Ji T, Zhang L Q, Wang W C, Liu Y, Zhang X F, Lu Y L. Cold plasma modification of boron nitride fillers and its effect on the thermal conductivity of silicone rubber/boron nitride composites. Polymer Composites, 2012, 33(9): 1473–1481

    Article  CAS  Google Scholar 

  21. Wu L K, Ying J, Chen L T. Improvement of thermal conductivity of silicone by carbon nanotube array (CNTA). Advanced Materials Research, 2014, 1061-1062: 96–99

    Article  CAS  Google Scholar 

  22. Zhou WY, Qi S H, Tu C C, Zhao H Z, Wang C F, Kou J L. Effect of the particle size of Al2O3 on the properties of filled heat-conductive silicone rubber. Journal of Applied Polymer Science, 2007, 104(2): 1312–1318

    Article  CAS  Google Scholar 

  23. Zhou W Y, Yu D M, Wang C F, An Q L, Qi S H. Effect of filler size distribution on the mechanical and physical properties of aluminafilled silicone rubber. Polymer Engineering and Science, 2008, 48(7): 1381–1388

    Article  CAS  Google Scholar 

  24. Zhou W Y, Qi S H, Zhao H Z, Liu N L. Thermally conductive silicone rubber reinforced with boron nitride particle. Polymer Composites, 2007, 28(1): 23–28

    Article  CAS  Google Scholar 

  25. Zou H, Zhang L Q, Tian M, Wu S Z, Zhao S H. Study on the structure and properties of conductive silicone rubber filled with nickel-coated graphite. Journal of Applied Polymer Science, 2010, 115(5): 2710–2717

    Article  CAS  Google Scholar 

  26. René S, Stefan R L, Katrin A, Martina B, André B, Thomas G. Transparent silicone calcium fluoride nanocomposite with improved thermal conductivity. Macromolecular Materials and Engineering, 2015, 300(1): 80–85

    Article  CAS  Google Scholar 

  27. Shang S M, Gan L, Yuen M C W, Jiang S X, Luo M N. Carbon nanotubes based high temperature vulcanized silicone rubber nanocomposite with excellent elasticity and electrical properties. Composites. Part A, Applied Science and Manufacturing, 2014, 66: 135–141

    Article  CAS  Google Scholar 

  28. Das A, Kasaliwal G R, Jurk R, Boldt R, Fischer D, Stöckelhuber K W, Heinrich G. Rubber composites based on graphene nanoplatelets, expanded graphite, carbon nanotubes and their combination: A comparative study. Composites Science and Technology, 2012, 72(16): 1961–1967

    Article  CAS  Google Scholar 

  29. Wang Q, Gao W, Xie Z M. Highly thermally conductive roomtemperature-vulcanized silicone rubber and silicone grease. Journal of Applied Polymer Science, 2003, 89(9): 2397–2399

    Article  CAS  Google Scholar 

  30. Stein J, Lewis L N, Gao Y, Scott R A. In situ determination of the active catalyst in hydrosilylation reactions using highly reactive Pt (0) catalyst precursors. Journal of the American Chemical Society, 1999, 121(15): 3693–3703

    Article  CAS  Google Scholar 

  31. Lweis L N, Colborn R E, Grade H, Bryant G L, Sumpter C A, Scott R A. Mechanism of formation of platinum(0) complexes containing silicon-vinyl ligands. Organometallics, 1995, 14(5): 2202–2213

    Article  Google Scholar 

  32. Zhao M, Feng Y K, Li G, Li Y, Wang Y L, Han Y, Sun X J, Tan X H. Synthesis of an adhesion-enhancing polysiloxane containing epoxy groups for addition-cure silicone light emitting diodes encapsulant. Polymers for Advanced Technologies, 2014, 25(9): 927–933

    Article  CAS  Google Scholar 

  33. Zhao M, Feng Y K, Li G, Li Y, Wang Y L, Han Y, Sun X J, Tan X H. Preparation and performance of phenyl-vinyl-POSS/additiontype curable silicone rubber hybrid material. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 2014, 51(8): 639–645

    Article  CAS  Google Scholar 

  34. Zhao M, Feng Y K, Li G, Li Y, Wang Y L, Han Y, Sun X J, Tan X H. Fabrication of siloxane hybrid material with high adhesion and high refractive index for light emitting diodes (LEDs) encapsulation. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 2014, 51(8): 653–658

    Article  CAS  Google Scholar 

  35. Gan L, Shang S M, Jiang S X. Impact of vinyl concentration of a silicone rubber on the properties of the graphene oxide filled silicone rubber composites. Composites. Part B, Engineering, 2016, 84: 294–300

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yakai Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Feng, Y., Zhao, J. et al. Oil bleed from elastomeric thermal silicone conductive pads. Front. Chem. Sci. Eng. 10, 509–516 (2016). https://doi.org/10.1007/s11705-016-1586-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-016-1586-y

Keywords

Navigation