Skip to main content
Log in

Influence of phase and morphology on thermal conductivity of alumina particle/silicone rubber composites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Silicone rubber filled with thermally conductive alumina is fabricated as a class of thermal interface materials in this work. The thermal conductivity of the prepared alumina/silicone rubber composite is measured as a function of alumina loading. The effects of alumina filler with different phases and morphologies on the thermal conductivity of the composite are investigated by comparative method. When the filler loading is low, the composite filled with porous irregular-shaped α-alumina exhibits a higher thermal conductivity than that filled with γ-Al2O3 and spherical α-Al2O3. In order to achieve a high loading, spherical α-Al2O3 has the most pronounced effect due to its intrinsic high thermal conductivity and unique morphology for homogeneous dispersion in the polymer matrix, which is superior to irregular-shaped α- and γ-Al2O3. Our results demonstrate that the composite filled with spherical alumina by the mass concentration of 82 % has six times thermal conductivity higher than pure silicone rubber. Thermogravimetric analysis studies exhibit that the thermal stability of the composite distinctly increases with filler loadings. The obtained data were compared with theoretical equations in the literatures that are used to predict the properties of two-phase mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Shimazaki, F. Hojo, Y. Takezawa, ACS Appl. Mater. Interfaces 1, 225 (2009)

    Article  Google Scholar 

  2. C.P. Wong, R.S. Bollampally, J. Appl. Poly. Sci. 74, 3396 (1999)

    Article  Google Scholar 

  3. Q.L. Shou, J.P. Cheng, J.H. Fang, F.H. Lu, J.J. Zhao, X.Y. Tao, F. Liu, X.B. Zhang, J. Appl. Poly. Sci. 127, 1697 (2013)

    Article  Google Scholar 

  4. H.Y. Yan, Y.X. Tang, J.L. Su, X.Y. Yang, Appl. Phys. A Mater. 114, 331 (2014)

    Article  ADS  Google Scholar 

  5. S. Zhang, X.Y. Cao, Y.M. Ma, Y.C. Ke, J.K. Zhang, F.S. Wang, Express Poly. Lett. 5, 581 (2011)

    Article  Google Scholar 

  6. W.Y. Zhou, D.M. Yu, J. Appl. Poly. Sci. 118, 3156 (2010)

    Article  Google Scholar 

  7. K. Chu, W.S. Li, H.F. Dong, Appl. Phys. A Mater. 111, 1 (2013)

    Article  ADS  Google Scholar 

  8. Y.N. Mi, G.Z. Liang, A.J. Gu, F.P. Zhao, L. Yuan, Ind. Eng. Chem. Res. 52, 3342 (2013)

    Article  Google Scholar 

  9. D.R. Paul, J.E. Mark, Prog. Polym. Sci. 35, 893 (2010)

    Article  Google Scholar 

  10. H. Im, J. Kim, Carbon 49, 3503 (2011)

    Article  Google Scholar 

  11. J. Hong, J. Lee, D. Jung, S.E. Shim, Thermochim. Acta 512, 34 (2011)

    Article  Google Scholar 

  12. L.C. Sim, S.R. Ramanan, H. Ismail, K.N. Seetharamu, T.J. Goh, Thermochim. Acta 430, 155 (2005)

    Article  Google Scholar 

  13. Q.H. Mu, S.Y. Feng, G.Z. Diao, Poly. Compos. 28, 125 (2007)

    Article  Google Scholar 

  14. A. Katihabwa, W.C. Wang, Y. Jiang, J. Reinf. Plast. Comp. 30, 1007 (2011)

    Article  Google Scholar 

  15. M.A. Raza, A.V.K. Weatwood, C. Stirling, N. Hondow, Compos. Part A 42, 1335 (2011)

    Article  Google Scholar 

  16. Q.H. Mu, S.Y. Feng, Thermochim. Acta 462, 70 (2007)

    Article  Google Scholar 

  17. S. Kemaloglu, G. Ozkoc, A. Aytac, Thermochim. Acta 499, 40 (2010)

    Article  Google Scholar 

  18. T.W. Han, S.M. Lv, C.X. Hao, F. Ding, Y. Zhang, Thermochim. Acta 529, 68 (2012)

    Article  Google Scholar 

  19. W.Y. Zhou, S.H. Qi, H.Z. Zhao, N.L. Liu, Poly. Compos. 28, 23 (2007)

    Article  Google Scholar 

  20. W.Y. Zhou, C.F. Wang, Q.L. An, H.Y. Ou, J. Compos. Mater. 42, 173 (2008)

    Article  Google Scholar 

  21. G.T. Kim, E.S. Park, J. Appl. Poly. Sci. 109, 1381 (2008)

    Article  Google Scholar 

  22. W.Y. Zhou, J. Mate. Sci. 46, 3883 (2011)

    Article  ADS  Google Scholar 

  23. W.Y. Zhou, D.M. Yu, C.F. Wang, Q.L. An, S.H. Qi, Poly. Eng. Sci. 48, 1381 (2008)

    Article  Google Scholar 

  24. W.Y. Zhou, S.H. Qi, C.C. Tu, H.Z. Zhao, C.F. Wang, J.L. Kou, J. Appl. Poly. Sci. 104, 1312 (2007)

    Article  Google Scholar 

  25. P. Gianluca, L.R. Andrew, E.B. Craig, D.G. Julian, Phys. Rev. B 71, 224115 (2005)

    Article  Google Scholar 

  26. Y. Shimazaki, F. Hojo, Y. Takezawa, Appl. Phys. Lett. 92, 133309 (2008)

    Article  ADS  Google Scholar 

  27. E.F. Thostenson, T.W. Chou, Carbon 44, 3022 (2006)

    Article  Google Scholar 

  28. F. Ren, P.G. Ren, Y.Y. Di, D.M. Chen, G.G. Liu, Polym Plast. Technol. 50, 791 (2011)

    Article  Google Scholar 

  29. J.P. Cheng, X. Chen, J.S. Wu, F. Liu, X.B. Zhang, V.P. Dravid, CrystEngComm 14, 6702 (2012)

    Article  Google Scholar 

  30. X. Chen, J.P. Cheng, Q.L. Shou, F. Liu, X.B. Zhang, CrystEngComm 14, 1271 (2012)

    Article  Google Scholar 

  31. R.F. Hill, P.H. Supancic, J. Am. Ceram. Soc. 87, 1831 (2004)

    Article  Google Scholar 

  32. X. Jiang, Foreign Refract. 2002, 64 (2002)

    Google Scholar 

  33. J.P. Cheng, B.B. Wang, M.G. Zhao, F. Liu, X.B. Zhang, Sens. Actuat. B Chem. 190, 78 (2014)

    Article  Google Scholar 

  34. B.B. Wang, X.X. Fu, F. Liu, S.L. Shi, J.P. Cheng, X.B. Zhang, J. Alloys Compd. 587, 82 (2014)

    Article  Google Scholar 

  35. T. Morishita, M. Matsushita, Y. Katagiri, K. Fukumori, Carbon 47, 2716 (2009)

    Article  Google Scholar 

  36. Y. Lin, A. Mcnamara, Y. Liu, K.S. Moon, C.P. Wong, Compos. Sci. Technol. 90, 123 (2014)

    Article  Google Scholar 

  37. D.C. Moreira, L.A. Sphaier, J.M.L. Reis, L.C.S. Nunes, Exp. Therm. Fluid Sci. 35, 1458 (2011)

    Article  Google Scholar 

  38. S.M. Kong, M. Mariatti, J.J.C. Busfield, J. Reinf. Plast. Comp. 30, 1087 (2011)

    Article  Google Scholar 

  39. R. Kochetov, A.V. Korobko, T. Andritsch, P.H.F. Morshuis, S.J. Picken, J.J. Smit, J. Phys. D Appl. Phys. 44, 395401 (2011)

    Article  Google Scholar 

  40. R.S. Prasher, J. Shipley, S. Prstic, P. Koning, J.L. Wang, J. Heat Trans.-T. ASME 125, 1170 (2003)

    Article  Google Scholar 

  41. A.G. Every, Y. Tzou, D.P.H. Hassleman, R. Raj, Acta Metall. Mater. 40, 123 (1992)

    Article  Google Scholar 

Download references

Acknowledgments

This work is financially supported by Zhejiang Provincial Natural Science foundation of China (Grant No. LZ12E06001) and Public-benefit Foundation of the Science and Technology Department of Zhejiang Province (2010C31112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Cheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 412 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, J.P., Liu, T., Zhang, J. et al. Influence of phase and morphology on thermal conductivity of alumina particle/silicone rubber composites. Appl. Phys. A 117, 1985–1992 (2014). https://doi.org/10.1007/s00339-014-8606-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8606-x

Keywords

Navigation