Skip to main content

Advertisement

Log in

Change in Adipokines and Gastrointestinal Hormones After Bariatric Surgery: a Meta-analysis

  • Original Contributions
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Purpose

The study aimed to perform a meta-analysis about the change in adipokines and gastrointestinal hormones after bariatric surgery in patients with obesity.

Materials and Methods

We searched the Cochrane Central Register of Controlled Trials, EMBASE, and PubMed for related articles and used Review Manager 5.4 for data aggregation. Sensitivity and subgroup analysis were also conducted when feasible.

Results

As a result, 95 articles involving 6232 patients were included in the meta-analysis. After bariatric surgery, the levels of leptin, ghrelin, C-reactive protein (CRP), interleukin-6 (IL-6), high-sensitivity C-reactive protein (Hs-CRP), tumor necrosis, factor-α (TNF-α), and interleukin-1β (IL-1β) reduced, while adiponectin, glucagon-like peptide-1 (GLP-1), and peptide YY (PYY) levels increased significantly. Subgroup analysis indicated that there was a more significant reduction in leptin level with a longer follow-up time. OAGB had a greater effect on increasing adiponectin level compared with other procedures. SG procedure would bring about reduced ghrelin, while BPD resulted in increased ghrelin. Meta-regression analysis found that publication year, study design, number of patients, preoperative age, preoperative BMI, and quality assessment score were not significantly related to change in leptin, adiponectin, and ghrelin levels.

Conclusion

Bariatric surgery was associated with a significant decrease in leptin, ghrelin, CRP, IL-6, Hs-CRP, TNF-α, and IL-1β, as well as increase in adiponectin, GLP-1, and PYY levels.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The analyzed datasets generated during the study are available from the corresponding author on reasonable request.

References

  1. Inge TH, Courcoulas AP, Jenkins TM, et al. Five-year outcomes of gastric bypass in adolescents as compared with adults. New Engl J Med. 2019;380(22):2136–45.

    Article  PubMed  Google Scholar 

  2. Afshin A, Forouzanfar MH, Reitsma MB, et al. Health effects of overweight and obesity in 195 countries over 25 years. New Engl J Med. 2017;377(1):13–27.

    Article  PubMed  Google Scholar 

  3. Schauer PR, Bhatt DL, Kirwan JP, et al. Bariatric surgery versus intensive medical therapy for diabetes - 5-year outcomes. N Engl J Med. 2017;376(7):641–51.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mingrone G, Panunzi S, De Gaetano A, et al. Bariatric-metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5 year follow-up of an open-label, single-centre, randomised controlled trial. Lancet. 2015;386(9997):964–73.

    Article  PubMed  Google Scholar 

  5. Robert M, Espalieu P, Pelascini E, et al. Efficacy and safety of one anastomosis gastric bypass versus Roux-en-Y gastric bypass for obesity (YOMEGA): a multicentre, randomised, open-label, non-inferiority trial. The Lancet. 2019;393(10178):1299–309.

    Article  Google Scholar 

  6. Valentí V, Cienfuegos JA, Becerril MS, et al. Mechanism of bariatric and metabolic surgery: beyond surgeons, gastroenterologists and endocrinologists. Rev Esp Enferm Dig. 2020;112(3):229–33.

    PubMed  Google Scholar 

  7. Riedl M, Vila G, Maier C, et al. Plasma osteopontin increases after bariatric surgery and correlates with markers of bone turnover but not with insulin resistance. J Clin Endocrinol Metab. 2008;93(6):2307–12.

    Article  CAS  PubMed  Google Scholar 

  8. Salman MA, El-Ghobary M, Soliman A, et al. Long-term changes in leptin, chemerin, and ghrelin levels following Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy. Obes Surg. 2020;30(3):1052–60.

    Article  PubMed  Google Scholar 

  9. Pardina E, Ferrer R, Baena-Fustegueras JA, et al. Only C-reactive protein, but not TNF-alpha or IL6, reflects the improvement in inflammation after bariatric surgery. Obes Surg. 2012;22(1):131–9.

    Article  PubMed  Google Scholar 

  10. Caron-Cantin SM, Martin J, Bastien M, et al. Acute and chronic effects of biliopancreatic diversion with duodenal switch surgery on plasma visfatin and apelin levels in patients with severe obesity. Obes Surg. 2013;23(11):1806–14.

    Article  PubMed  Google Scholar 

  11. Abdennour M, Reggio S, Le Naour G, et al. Association of adipose tissue and liver fibrosis with tissue stiffness in morbid obesity: links with diabetes and BMI loss after gastric bypass. J Clin Endocrinol Metab. 2014;99(3):898–907.

    Article  CAS  PubMed  Google Scholar 

  12. Jirapinyo P, Jin DX, Qazi T. A meta-analysis of GLP-1 after Roux-en-Y Gastric bypass: impact of surgical technique and measurement strategy. Obes Surg. 2018;28(3):615–26.

    Article  PubMed  Google Scholar 

  13. Flores L, Vidal J, Nunez I. Longitudinal changes of blood pressure after weight loss: factors involved. Surg Obes Relat Dis. 2015;11(1):215–21.

    Article  PubMed  Google Scholar 

  14. Khanaghaei M, Ziamajidi N, Poorolajal J, et al. The influence of gastric bypass surgery on the concentration of high mobility group box 1, nuclear factor erythroid 2-related factor 2 and the genes expression of high mobility group box 1, nuclear factor erythroid2-related factor 2, interleukin 6, and tumor necrosis factor-alpha in the peripheral blood mononuclear cells of patients with morbid obesity. Mol Biol Rep. 2022;49(5):3745–55.

    Article  CAS  PubMed  Google Scholar 

  15. Moriconi D, Antonioli L, Masi S, et al. Glomerular hyperfiltration in morbid obesity: role of the inflammasome signalling. Nephrology (Carlton). 2022;27(8):673–80.

    Article  CAS  PubMed  Google Scholar 

  16. El-Zawawy HT, El-Aghoury AA, Katri KM, et al. Cortisol/DHEA ratio in morbidly obese patients before and after bariatric surgery: relation to metabolic parameters and cardiovascular performance. Int J Obes (Lond). 2022;46(2):381–92.

    Article  CAS  PubMed  Google Scholar 

  17. Salman AA, Salman MA, Said M, et al. Improvement of pancreatic steatosis and indices of insulin resistance after metabolic surgery. Front Med (Lausanne). 2022;9:894465.

    Article  PubMed  Google Scholar 

  18. Farup PG, Jansen A, Hestad K, et al. APOE Polymorphism and endocrine functions in subjects with morbid obesity undergoing bariatric surgery. Genes (Basel). 2022;13(2):222.

    Article  CAS  PubMed  Google Scholar 

  19. Hany M, Demerdash HM, Agayby A, et al. Can leptin/Ghrelin ratio and retinol-binding protein 4 predict improved insulin resistance in patients with obesity undergoing sleeve gastrectomy? Obes Surg. 2022;32(12):3942–50.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pacheco D, Izaola O, Primo D, et al. Role of the variant rs3774261 of adiponectin gene on adiponectin levels and ratio adiponectin/leptin after biliopancreatic diversion in morbid obese subjects. Eur Rev Med Pharmaco. 2022;26(1):240–8.

    CAS  Google Scholar 

  21. Frühbeck G, Gómez-Ambrosi J, Ramírez B, et al. Increased levels of interleukin-36 in obesity and type 2 diabetes fuel adipose tissue inflammation by inducing its own expression and release by adipocytes and macrophages. Front Immunol. 2022;13:832185.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhou Q, Yan P, Shi H, et al. Might female patients benefit more from bariatric surgery with respect to inflammation. Front Surg. 2022;9:890116.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Frühbeck G, Catalán V, Ramírez B, et al. Serum levels of IL-1 RA increase with obesity and type 2 diabetes in relation to adipose tissue dysfunction and are reduced after bariatric surgery in parallel to adiposity. J Inflamm Res. 2022;15:1331–45.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sachan A, Singh A, Shukla S, et al. An immediate post op and follow up assessment of circulating adipo-cytokines after bariatric surgery in morbid obesity. Metabol Open. 2022;13:100147.

    Article  CAS  PubMed  Google Scholar 

  25. Tas A, Atabey M, Gokcen P, et al. Leptin/melanocortin pathway hormones in obese patients after laparoscopic sleeve gastrectomy. Eur Rev Med Pharmacol Sci. 2022;26(5):1484–91.

    CAS  PubMed  Google Scholar 

  26. Lautenbach A, Stoll F, Mann O, et al. Long-term improvement of chronic low-grade inflammation after bariatric surgery. Obes Surg. 2021;31(7):2913–20.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Salman MA, Salman AA, El Sherbiny M, et al. Changes of carotid intima-media thickness after sleeve gastrectomy in high cardiovascular risk patients: a prospective study. Obes Surg. 2021;31(8):3541–7.

    Article  PubMed  Google Scholar 

  28. Tabasi M, Eybpoosh S, Siadat SD, et al. Modulation of the gut microbiota and serum biomarkers after laparoscopic sleeve gastrectomy: a 1-year follow-up study. Obes Surg. 2021;31(5):1949–56.

    Article  PubMed  Google Scholar 

  29. Carmona-Maurici J, Cuello E, Ricart-Jane D, et al. Effect of bariatric surgery on inflammation and endothelial dysfunction as processes underlying subclinical atherosclerosis in morbid obesity. Surg Obes Relat Dis. 2020;16(12):1961–70.

    Article  PubMed  Google Scholar 

  30. Salman MA, Abdallah A, Mikhail HMS, et al. Long-term impact of mini-gastric bypass on inflammatory cytokines in cohort of morbidly obese patients: a prospective study. Obes Surg. 2020;30(6):2338–44.

    Article  PubMed  Google Scholar 

  31. Yin X, Qian J, Wang Y, et al. Short-term outcome and early effect on blood pressure of laparoscopic sleeve gastrectomy in morbidly obese patients. Clin Exp Hypertens. 2019;41(7):622–6.

    Article  CAS  PubMed  Google Scholar 

  32. Sharma G, Nain PS, Sethi P, et al. Plasma ghrelin levels after laparoscopic sleeve gastrectomy in obese individuals. Indian J Med Res. 2019;149(4):544–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Arhire LI, Mihalache L, Padureanu SS, et al. Changes in bone mineral parameters after sleeve gastrectomy: relationship with ghrelin and plasma adipokine levels. Acta Endocrinol (Buchar). 2018;14(4):498–504.

    Article  CAS  PubMed  Google Scholar 

  34. Demerdash HM, Sabry AA, Arida EA. Role of serotonin hormone in weight regain after sleeve gastrectomy. Scand J Clin Lab Invest. 2018;78(1–2):68–73.

    Article  CAS  PubMed  Google Scholar 

  35. Belligoli A, Sanna M, Serra R, et al. Incidence and predictors of hypoglycemia 1 year after laparoscopic sleeve gastrectomy. Obes Surg. 2017;27(12):3179–86.

    Article  PubMed  Google Scholar 

  36. Chen J, Yu H, Chen L, et al. Effect of Roux-en-Y gastric bypass on carotid intima-media thickness in Chinese obese patients with type 2 diabetes. Surg Obes Relat Dis. 2017;13(9):1530–5.

    Article  PubMed  Google Scholar 

  37. de Luis DA, Pacheco D, Primo D, et al. The association of SNP276G>T at adiponectin gene with insulin resistance and circulating adiponectin in morbid obese patients after a biliopancreatic diversion surgery. Obes Surg. 2017;27(12):3247–52.

    Article  PubMed  Google Scholar 

  38. Piche ME, Thorin-Trescases N, Auclair A, et al. Bariatric surgery-induced lower angiopoietin-like 2 protein is associated with improved cardiometabolic profile. Can J Cardiol. 2017;33(8):1044–51.

    Article  PubMed  Google Scholar 

  39. Sans A, Bailly L, Anty R, et al. Baseline anthropometric and metabolic parameters correlate with weight loss in women 1-year after laparoscopic Roux-en-Y gastric bypass. Obes surg. 2017;27(11):2940–9.

    Article  PubMed  Google Scholar 

  40. Sell H, Poitou C, Habich C, et al. Heat shock protein 60 in obesity: effect of bariatric surgery and its relation to inflammation and cardiovascular risk. Obesity (Silver Spring). 2017;25(12):2108–14.

    Article  CAS  PubMed  Google Scholar 

  41. Thereaux J, Mingant F, Roche C, et al. Reduction of coagulability state one year after bariatric surgery. Surg Obes Relat Dis. 2017;13(2):327–33.

    Article  PubMed  Google Scholar 

  42. Tirado R, Masdeu MJ, Vigil L, et al. Impact of bariatric surgery on heme oxygenase-1, inflammation, and insulin resistance in morbid obesity with obstructive sleep apnea. Obes Surg. 2017;27(9):2338–46.

    Article  PubMed  Google Scholar 

  43. Urbanavicius V, Juodeikis Z, Dzenkeviciute V, et al. A prospective 4-year study of insulin resistance and adipokines in morbidly obese diabetic and non-diabetic patients after gastric banding. Wideochir Inne Tech Maloinwazyjne. 2017;12(2):147–53.

    PubMed  PubMed Central  Google Scholar 

  44. Yadav R, Hama S, Liu Y, et al. Effect of Roux-en-Y bariatric surgery on lipoproteins, insulin resistance, and systemic and vascular inflammation in obesity and diabetes. Front Immunol. 2017;8:1512.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Schmatz R, Bitencourt MR, Patias LD, et al. Evaluation of the biochemical, inflammatory and oxidative profile of obese patients given clinical treatment and bariatric surgery. Clin Chim Acta. 2017;465:72–9.

    Article  CAS  PubMed  Google Scholar 

  46. Kalinowski P, Paluszkiewicz R, Wróblewski T, et al. Ghrelin, leptin, and glycemic control after sleeve gastrectomy versus Roux-en-Y gastric bypass—results of a randomized clinical trial. Surg Obes Relat Dis. 2017;13(2):181–8.

    Article  PubMed  Google Scholar 

  47. Rao R, Roche A, Febres G, et al. Circulating apolipoprotein A-IV presurgical levels are associated with improvement in insulin sensitivity after Roux-en-Y gastric bypass surgery. Surg Obes Relat Dis. 2017;13(3):468–73.

    Article  PubMed  Google Scholar 

  48. Zhu Y, Sun Z, Du Y, et al. Evaluation of insulin resistance improvement after laparoscopic sleeve gastrectomy or gastric bypass surgery with HOMA-IR. Biosci Trends. 2017;11(6):675–81.

    Article  CAS  PubMed  Google Scholar 

  49. Adami GF, Gradaschi R, Andraghetti G, et al. Serum leptin and adiponectin concentration in type 2 diabetes patients in the short and long term following biliopancreatic diversion. Obes Surg. 2016;26(10):2442–8.

    Article  PubMed  Google Scholar 

  50. Illan Gomez F, Gonzalvez Ortega M, Aragon Alonso A, et al. Obesity, endothelial function and inflammation: the effects of weight loss after bariatric surgery. Nutr Hosp. 2016;33(6):1340–6.

    Article  PubMed  Google Scholar 

  51. Morshed G, Fathy SM. Impact of post-laparoscopic sleeve gastrectomy weight loss on C-reactive protein, lipid profile and CA-125 in morbidly obese women. Wideochir Inne Tech Maloinwazyjne. 2016;10(4):521–6.

    PubMed  Google Scholar 

  52. Pelascini E, Disse E, Pasquer A. Should we wait for metabolic complications before operating on obese patients? Gastric bypass outcomes in metabolically healthy obese individuals. Surg Obes Relat Dis. 2016;12(1):49–56.

    Article  PubMed  Google Scholar 

  53. Shih KC, Janckila AJ, Lee WJ, et al. Effects of bariatric weight loss surgery on glucose metabolism, inflammatory cytokines, and serum tartrate-resistant acid phosphatase 5a in obese Chinese adults. Clin Chim Acta. 2016;453:197–202.

    Article  CAS  PubMed  Google Scholar 

  54. Yu H, Chen J, Lu J, et al. Decreased visceral fat area correlates with improved arterial stiffness after Roux-en-Y gastric bypass in Chinese obese patients with type 2 diabetes mellitus: a 12-month follow-up. Surg Obes Relat Dis. 2016;12(3):550–5.

    Article  PubMed  Google Scholar 

  55. Dogan U, Ellidag HY, Aslaner A, et al. The impact of laparoscopic sleeve gastrectomy on plasma obestatin and ghrelin levels. Eur Rev Med Pharmacol Sci. 2016;20(10):2113–22.

    CAS  PubMed  Google Scholar 

  56. Gentili A, Zaibi M, Alomar S, et al. Circulating levels of the adipokines monocyte chemotactic protein-4 (MCP-4), macrophage inflammatory protein-1β (MIP-1β), and eotaxin-3 in severe obesity and following bariatric surgery. Horm Metab Res. 2016;48(12):847–53.

    Article  CAS  PubMed  Google Scholar 

  57. Richette P, Poitou C, Manivet P, et al. Weight loss, xanthine oxidase, and serum urate levels: a prospective longitudinal study of obese patients. Arthrit Care Res. 2016;68(7):1036–42.

    Article  CAS  Google Scholar 

  58. Molin Netto BD, Earthman CP, Cravo Bettini S, et al. Early effects of Roux-en-Y gastric bypass on peptides and hormones involved in the control of energy balance. Eur J Gastroen Hepat. 2016;28(9):1050–5.

    Article  Google Scholar 

  59. Nosso G, Griffo E, Cotugno M, et al. Comparative effects of Roux-en-Y gastric bypass and sleeve gastrectomy on glucose homeostasis and incretin hormones in obese type 2 diabetic patients: a one-year prospective study. Horm Metab Res. 2016;48(5):312–7.

    Article  CAS  PubMed  Google Scholar 

  60. Alosco ML, Spitznagel MB, Strain G, et al. Improved serum leptin and ghrelin following bariatric surgery predict better postoperative cognitive function. J Clin Neurol. 2015;11(1):48–56.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ferrer R, Pardina E, Rossell J, et al. Morbidly “healthy” obese are not metabolically healthy but less metabolically imbalanced than those with type 2 diabetes or dyslipidemia. Obes Surg. 2015;25(8):1380–91.

    Article  PubMed  Google Scholar 

  62. Hawkins MA, Alosco ML, Spitznagel MB, et al. The association between reduced inflammation and cognitive gains after bariatric surgery. Psychosom Med. 2015;77(6):688–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Netto BDM, Bettini SC, Clemente APG, et al. Roux-en-Y gastric bypass decreases pro-inflammatory and thrombotic biomarkers in individuals with extreme obesity. Obes Surg. 2015;25(6):1010–8.

    Article  PubMed  Google Scholar 

  64. Gandolfini MP, Coupaye M, Bouaziz E, et al. Cardiovascular changes after gastric bypass surgery: involvement of increased secretions of glucagon-like peptide-1 and brain natriuretic peptide. Obes Surg. 2015;25(10):1933–9.

    Article  PubMed  Google Scholar 

  65. Fellici AC, Lambert G, Lima MM, et al. Surgical treatment of type 2 diabetes in subjects with mild obesity: mechanisms underlying metabolic improvements. Obes Surg. 2015;25(1):36–44.

    Article  CAS  PubMed  Google Scholar 

  66. Auguet T, Terra X, Hernandez M, et al. Clinical and adipocytokine changes after bariatric surgery in morbidly obese women. Obesity (Silver Spring). 2014;22(1):188–94.

    Article  CAS  PubMed  Google Scholar 

  67. Ferrannini E, Rosenbaum M, Leibel RL. The threshold shift paradigm of obesity: evidence from surgically induced weight loss. Am J Clin Nutr. 2014;100(4):996–1002.

    Article  CAS  PubMed  Google Scholar 

  68. Yang PJ, Lee WJ, Tseng PH, et al. Bariatric surgery decreased the serum level of an endotoxin-associated marker: lipopolysaccharide-binding protein. Surg Obes Relat Dis. 2014;10(6):1182–7.

    Article  PubMed  Google Scholar 

  69. Rojano-Rodríguez ME, Valenzuela-Salazar C, Cárdenas-Lailson LE, et al. C-Reactive protein level in morbidly obese patients before and after bariatric surgery. Rev Gastroenterol Méx (Engl Ed). 2014;79(2):90–5.

    Google Scholar 

  70. Carrasco F, Basfi-Fer K, Rojas P, et al. Changes in bone mineral density after sleeve gastrectomy or gastric bypass: relationships with variations in vitamin D, ghrelin, and adiponectin levels. Obes Surg. 2014;24(6):877–84.

    Article  PubMed  Google Scholar 

  71. Bužga M, Zavadilová V, Holéczy P, et al. Dietary intake and ghrelin and leptin changes after sleeve gastrectomy. Wideochir Inne Tech Maloinwazyjne. 2014;9(4):554–61.

    PubMed  PubMed Central  Google Scholar 

  72. Lips MA, de Groot GH, van Klinken JB, et al. Calorie restriction is a major determinant of the short-term metabolic effects of gastric bypass surgery in obese type 2 diabetic patients. Clin Endocrinol (Oxf). 2014;80(6):834–42.

    Article  CAS  PubMed  Google Scholar 

  73. Jimenez A, Perea V, Corcelles R, et al. Metabolic effects of bariatric surgery in insulin-sensitive morbidly obese subjects. Obes Surg. 2013;23(4):494–500.

    Article  PubMed  Google Scholar 

  74. Terra X, Auguet T, Guiu-Jurado E, et al. Long-term changes in leptin, chemerin and ghrelin levels following different bariatric surgery procedures: Roux-en-Y gastric bypass and sleeve gastrectomy. Obes Surg. 2013;23(11):1790–8.

    Article  PubMed  Google Scholar 

  75. Saleh MH, Bertolami MC, Assef JE, et al. Improvement of atherosclerotic markers in non-diabetic patients after bariatric surgery. Obes Surg. 2012;22(11):1701–7.

    Article  PubMed  Google Scholar 

  76. Hady HR, Dadan J, Gołaszewski P, et al. Impact of laparoscopic sleeve gastrectomy on body mass index, ghrelin, insulin and lipid levels in 100 obese patients. Wideochir Inne Tech Maloinwazyjne. 2012;7(4):251–9.

    PubMed  PubMed Central  Google Scholar 

  77. Dalmas E, Rouault C, Abdennour M, et al. Variations in circulating inflammatory factors are related to changes in calorie and carbohydrate intakes early in the course of surgery-induced weight reduction. Am J Clin Nutr. 2011;94(2):450–8.

    Article  CAS  PubMed  Google Scholar 

  78. Tschoner A, Sturm W, Ress C, et al. Effect of weight loss on serum pigment epithelium-derived factor levels. Eur J Clin Invest. 2011;41(9):937–42.

    Article  CAS  PubMed  Google Scholar 

  79. Breitman I, Saraf N, Kakade M, et al. The effects of an amino acid supplement on glucose homeostasis, inflammatory markers, and incretins after laparoscopic gastric bypass. J Am Coll Surg. 2011;212(4):617–25, 625–7.

  80. Broch M, Gomez JM, Auguet MT, et al. Association of retinol-binding protein-4 (RBP4) with lipid parameters in obese women. Obes Surg. 2010;20(9):1258–64.

    Article  PubMed  Google Scholar 

  81. de Luis DA, Pacheco D, Aller R, et al. Influence of G308A polymorphism of tumor necrosis factor alpha gene on surgical results of biliopancreatic diversion. Obes Surg. 2010;20(2):221–5.

    Article  PubMed  Google Scholar 

  82. Handisurya A, Riedl M, Vila G, et al. Serum vaspin concentrations in relation to insulin sensitivity following RYGB-induced weight loss. Obes Surg. 2010;20(2):198–203.

    Article  PubMed  Google Scholar 

  83. Ress C, Tschoner A, Engl J, et al. Effect of bariatric surgery on circulating chemerin levels. Eur J Clin Invest. 2010;40(3):277–80.

    Article  CAS  PubMed  Google Scholar 

  84. Korner J, Inabnet W, Febres G, et al. Prospective study of gut hormone and metabolic changes after adjustable gastric banding and Roux-en-Y gastric bypass. Int J Obes (Lond). 2009;33(7):786–95.

    Article  CAS  PubMed  Google Scholar 

  85. Moschen AR, Molnar C, Wolf AM, et al. Effects of weight loss induced by bariatric surgery on hepatic adipocytokine expression. J Hepatol. 2009;51(4):765–77.

    Article  CAS  PubMed  Google Scholar 

  86. Carroll JF, Franks SF, Smith AB, et al. Visceral adipose tissue loss and insulin resistance 6 months after laparoscopic gastric banding surgery: a preliminary study. Obes Surg. 2009;19(1):47–55.

    Article  PubMed  Google Scholar 

  87. Liou JM, Lin JT, Lee WJ, et al. The serial changes of ghrelin and leptin levels and their relations to weight loss after laparoscopic minigastric bypass surgery. Obes Surg. 2008;18(1):84–9.

    Article  PubMed  Google Scholar 

  88. Garcia-Fuentes E, Garrido-Sanchez L, Garcia-Almeida JM, et al. Different effect of laparoscopic Roux-en-Y gastric bypass and open biliopancreatic diversion of Scopinaro on serum PYY and ghrelin levels. Obes Surg. 2008;18(11):1424–9.

    Article  CAS  PubMed  Google Scholar 

  89. Karamanakos SN, Vagenas K, Kalfarentzos F, et al. Weight loss, appetite suppression, and changes in fasting and postprandial ghrelin and peptide-YY levels after Roux-en-Y gastric bypass and sleeve gastrectomy: a prospective, doubleblind study. Ann Surg. 2008;247(3):401–7.

    Article  PubMed  Google Scholar 

  90. Czupryniak L, Pawlowski M, Kumor A, et al. Predicting maximum Roux-en-Y gastric bypass-induced weight reduction–preoperative plasma leptin or body weight? Obes Surg. 2007;17(2):162–7.

    Article  PubMed  Google Scholar 

  91. Poitou C, Coussieu C, Rouault C, et al. Serum amyloid A: a marker of adiposity-induced low-grade inflammation but not of metabolic status. Obesity (Silver Spring). 2006;14(2):309–18.

    Article  CAS  PubMed  Google Scholar 

  92. Haider DG, Schindler K, Schaller G, et al. Increased plasma visfatin concentrations in morbidly obese subjects are reduced after gastric banding. J Clin Endocrinol Metab. 2006;91(4):1578–81.

    Article  CAS  PubMed  Google Scholar 

  93. Morínigo R, Lacy AM, Casamitjana R, et al. GLP-1 and changes in glucose tolerance following gastric bypass surgery in morbidly obese subjects. Obes Surg. 2006;16(12):1594–601.

    Article  PubMed  Google Scholar 

  94. Coupaye M, Bouillot JL, Coussieu C, et al. One-year changes in energy expenditure and serum leptin following adjustable gastric banding in obese women. Obes Surg. 2005;15(6):827–33.

    Article  PubMed  Google Scholar 

  95. Garcia-Unzueta MT, Fernandez-Santiago R, Dominguez-Diez A, et al. Fasting plasma ghrelin levels increase progressively after biliopancreatic diversion: one-year follow-up. Obes Surg. 2005;15(2):187–90.

    Article  CAS  PubMed  Google Scholar 

  96. Kopp HP, Krzyzanowska K, Mohlig M, et al. Effects of marked weight loss on plasma levels of adiponectin, markers of chronic subclinical inflammation and insulin resistance in morbidly obese women. Int J Obes (Lond). 2005;29(7):766–71.

    Article  CAS  PubMed  Google Scholar 

  97. Laimer M, Kaser S, Kranebitter M, et al. Effect of pronounced weight loss on the nontraditional cardiovascular risk marker matrix metalloproteinase-9 in middle-aged morbidly obese women. Int J Obes (Lond). 2005;29(5):498–501.

    Article  CAS  PubMed  Google Scholar 

  98. Poitou C, Lacorte JM, Coupaye M, et al. Relationship between single nucleotide polymorphisms in leptin, IL6 and adiponectin genes and their circulating product in morbidly obese subjects before and after gastric banding surgery. Obes Surg. 2005;15(1):11–23.

    Article  PubMed  Google Scholar 

  99. Uzun H, Zengin K, Taskin M, et al. Changes in leptin, plasminogen activator factor and oxidative stress in morbidly obese patients following open and laparoscopic Swedish adjustable gastric banding. Obes Surg. 2004;14(5):659–65.

    Article  PubMed  Google Scholar 

  100. Infanger D, Baldinger R, Branson R, et al. Effect of significant intermediate-term weight loss on serum leptin levels and body composition in severely obese subjects. Obes Surg. 2003;13(6):879–88.

    Article  PubMed  Google Scholar 

  101. Geloneze B, Tambascia MA, Pareja JC, et al. Serum leptin levels after bariatric surgery across a range of glucose tolerance from normal to diabetes. Obes Surg. 2001;11(6):693–8.

    Article  CAS  PubMed  Google Scholar 

  102. Adami GF, Cordera R, Campostano A, et al. Serum leptin and weight loss in severely obese patients undergoing biliopancreatic diversion. Int J Obes Relat Metab Disord. 1998;22(8):822–4.

    Article  CAS  PubMed  Google Scholar 

  103. Wu N, Tan HR. Leptin receptor and its relations with obesity. Chin Pharmacol Bull. 2004;20(12):1334–6.

    CAS  Google Scholar 

  104. Holtkamp K, Hebebrand J, Mika C, et al. High serum leptin levels subsequent to weight gain predict renewed weight loss in patients with anorexia nervosa. Psychoneuroendocrino. 2004;29(6):791–7.

    Article  CAS  Google Scholar 

  105. Gruzdeva O, Borodkina D, Uchasova E, et al. Leptin resistance: underlying mechanisms and diagnosis. Diabetes Metab Syndr Obes. 2019;12:191–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Woelnerhanssen B, Peterli R, Steinert RE, et al. Effects of postbariatric surgery weight loss on adipokines and metabolic parameters: comparison of laparoscopic Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy–a prospective randomized trial. Surg Obes Relat Dis. 2011;7(5):561–8.

    Article  PubMed  Google Scholar 

  107. Biver E, Salliot C, Combescure C, et al. Influence of adipokines and ghrelin on bone mineral density and fracture risk: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2011;96(9):2703–13.

    Article  CAS  PubMed  Google Scholar 

  108. Farias G, Netto BDM, Boritza K, et al. Impact of weight loss on inflammation state and endothelial markers among individuals with extreme obesity after gastric bypass surgery: a 2-year follow-up study. Obes Surg. 2020;30(5):1881–90.

    Article  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Fundamental Research Funds for the Central Universities (21622304) and the Basic and Applied Basic Research Project of Guangzhou Basic Research Program (SL2023A04J01245).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingge Yang or Bingsheng Guan.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to Participate

Informed consent does not apply.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Points

1. Bariatric surgery was associated with a significant decrease in leptin, ghrelin, CRP, IL-6, Hs-CRP, TNF-α, and IL-1β levels.

2. The levels of adiponectin, GLP-1, and PYY increased after bariatric surgery.

3. Publication year, study design, number of patients, preoperative age, preoperative BMI, and quality assessment score were not significantly related to change in leptin, adiponectin, and ghrelin levels.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Chen, Y., Wang, X. et al. Change in Adipokines and Gastrointestinal Hormones After Bariatric Surgery: a Meta-analysis. OBES SURG 33, 789–806 (2023). https://doi.org/10.1007/s11695-022-06444-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-022-06444-8

Keywords

Navigation