Skip to main content
Log in

Electrochemical sensing of lactochrome in pharmaceutical sample using L-asparagine layered carbon based sensor

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The electrochemical behavior of Lactochrome (LC) was investigated using Poly (L-asparagine) modified carbon paste sensor (PAMCPS) via Differential Pulse Voltammetry (DPV) and Cyclic Voltammetry (CV). PAMCPS was fabricated from the bare carbon paste sensor (BCPS) and both the bare and the modified sensors were characterized via Scanning Electron Microscope (SEM), Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS) and the surface behavior and conductivity was studied. The modified sensor portrayed greater efficiency in the detection of LC in comparison with the BCPS. PAMCPS showed a noticeable electrocatalytic action for the electrochemical behavior of LC in a phosphate buffer solution (PBS) of pH 6.5 exhibiting a maximum oxidation peak current of 7.98 µA. PAMCPS showed enhanced active surface area with an appreciable rate of electron transfer when compared to BCPS resulting in a low limit of detection (LOD) of 0.25 µM in the linear range of 0.6 µM − 1.0 µM. Simultaneous analysis of LC and dopamine (DN) was made to verify the efficiency of the proposed sensor. The impact of common interferents like metal ions, inorganic ions and biomolecules were examined and no effect on the peak current of LC was observed. The newly modified sensor was employed for the detection of LC in pharmaceutical sample with a convincing recovery rate. The modified sensor portrayed outstanding stability, repeatability along with reproducibility proving it to be a stable and a well-constructed sensor for LC analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 9
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N. Suwannasom, I. Kao, A. Pruß, R. Georgieva, H. Bäumler, Int. J. Mol. Sci. 22(9), 3224 (2022). https://doi.org/10.3390/ijms21030950

    Article  CAS  Google Scholar 

  2. A. Saedisomeolia, M. Ashoori, Advances in Food and Nutrition Research (Elsevier, 2018), pp. 57–81. https://doi.org/10.1016/bs.afnr.2017.11.002

  3. J.L. Golbach, S.C. Ricke, C.A. O’Bryan, P.G. Crandall, J. Food Res. 3(6) (2014). https://doi.org/10.5539/jfr.v3n6p23

  4. C.D. Capo- chichi, J.L. Gueant, F. Feillet, F. Namour, M. Vidailhet, J. Chromatogr. B 739, 219–224 (2000). https://doi.org/10.1016/S0378-4347(99)00469-7

    Article  CAS  Google Scholar 

  5. N.L. Britton, K.L. Riter, R.L. Smallidge, J. Hillebrandt, J. AOAC Int. 86(2), 197–201 (2003). https://doi.org/10.1093/jaoac/86.2.197

    Article  CAS  PubMed  Google Scholar 

  6. G. Holzmann, M. Bock, M. Elsner, H. Kurreck, F. Muller, J. Mass. Spectrom. 23, 789–793 (1988). https://doi.org/10.1002/oms.1210231110

    Article  CAS  Google Scholar 

  7. E.M. Becker, J. Christensen, C.S. Frederiksen, V.K. Haugaard, J. Dairy. Sci. 86(8), 2508–2515 (2003). https://doi.org/10.3168/jds.S0022-0302(03)73845-4

    Article  CAS  Google Scholar 

  8. A. Safavi, M.A. Karimi, M.R. Hormozi Nezhad, Luminescence. 20(3), 170–175 (2005). https://doi.org/10.1002/bio.811

    Article  CAS  PubMed  Google Scholar 

  9. T. Perez- Ruiz, C. Martinez- Lozano, A. Sanz, E. Bravo, Electrophoresis. 22(6), 1170–1174 (2001). https://doi.org/10.1002/1522-2683()22:6%3C1170::AID-ELPS1170%3E3.0.CO;2-1

    Article  CAS  PubMed  Google Scholar 

  10. N. Mphuthi, A. Jijana, N. Mhlanga, M. Muchindu, S. Nyembe, B. Mwakikunga, G. Ndlovu, L. Sikhwivhilu, Elsevier, 3–31 (2023), https://doi.org/10.1016/B978-0-323-90553-4.00014-7

  11. N. Kumaragurubaran, P. Arul, S.T. Huang, C. Nandhini, V. Mani, C.H. Huang, Appl. Surf. Sci. 613, 156141 (2023). https://doi.org/10.1016/j.apsusc.2022.156141

    Article  CAS  Google Scholar 

  12. S.V. Selvi, U. Rajaji, S.M. Chen, J. N Jebaranjitham Colloids Surf. A: Physicochem Eng. Asp. 631, 127733 (2021). https://doi.org/10.1016/j.colsurfa.2021.127733

    Article  CAS  Google Scholar 

  13. I.G. Munteanu, C. Apetrei, Antioxid. (Basel). 11(3), 584 (2022). https://

    Article  CAS  Google Scholar 

  14. M. Govindasamy, Z.A. ALOthman, R.A. Alshgari, R. Arumugam, C.H. Huang, J. Environ. Chem. Eng. 11(3), 109680 (2023). https://doi.org/10.1016/j.jece.2023.109680

    Article  CAS  Google Scholar 

  15. K. Vignesh, A.S. Kumar, A.A. Napoleon, C.Y. Kuo, K. Yusuf, M Govindasamy Microchem J. 197, 109908 (2024). https://doi.org/10.1016/j.microc.2024.109908

    Article  CAS  Google Scholar 

  16. M. Govindasamy, C.R. Jian, C.F. Kuo et al., Microchim. Acta. 189, 374 (2022). https://doi.org/10.1007/s00604-022-05463-7

    Article  CAS  Google Scholar 

  17. M. Zen, A. Senthil Kumar, D. Tsai, Electroanalysis, 15 (13), 1073–1087 (2003), https://doi.org/10.1002/elan.200390130

  18. H. Beitollahi, S. Tajik, Environ. Monit. Assess. 187(5), 257 (2015). https://doi.org/10.1007/s10661-015-4506-6

    Article  CAS  PubMed  Google Scholar 

  19. A. Mazurek, M. Włodarczyk-Stasiak, 28 (2), 812 (2023), https://doi.org/10.3390/molecules28020812

  20. F.H. Moghadam, M.A. Taher, H. Karimi- Maleh, FCT, 152, 112166 (2021), https://doi.org/10.1016/j.fct.2021.112166

  21. J. Kalaiyarasi, S. Meenakshi, K. Pandian, S. Gopinath, Microchim. Acta. 184, 2131–2140 (2017). https://doi.org/10.1007/s00604-017-2161-z

    Article  CAS  Google Scholar 

  22. S.U. Karabiberoglu, C.C. Kocak, Turk. J. Chem. 42(2), 291–305 (2018). https://doi.org/10.3906/kim-1704-21

    Article  CAS  Google Scholar 

  23. O.I. Lipskikh, E.I. Korotkova, J. Barek, V. Vyskocil, M. Saqib, E.P. Khristunova, Talanta. 218, 121136 (2020). https://doi.org/10.1016/j.talanta.2020.121136

    Article  CAS  PubMed  Google Scholar 

  24. M. Silva, M. Garcia, J. Lima, E. Barrado, Talanta, 72 (1), 282–288 (2007), https://doi.org/10.1016/j.talanta.2006.10.032

  25. N. Hareesha, J.G. Manjunatha, B.M. Amrutha, P.A. Pushpanjali, M.M. Charithra, N.S. Prinith, J. Electron. Mater. 50(3), 1230–1238 (2021). https://doi.org/10.1007/s11664-020-08616-7

    Article  CAS  Google Scholar 

  26. G. Tigari, J.G. Manjunatha, J. Anal. Test. 3, 331–340 (2019). https://doi.org/10.1007/s41664-019-00116-w

    Article  Google Scholar 

  27. E. Mehmeti, D.M. Stankovic, S. Chaiyo, L. Svorc, K. Kalcher, Microchim. Acta. 183, 1619–1624 (2016). https://doi.org/10.1007/s00604-016-1789-4

    Article  CAS  Google Scholar 

  28. G. Tigari, J.G. Manjunatha, C. Raril, N. Hareesha, ChemistrySelect. 4(7), 2168–2173 (2019). https://doi.org/10.1002/slct.201803191

    Article  CAS  Google Scholar 

  29. J. Bai, J.C. Ndamanisha, L. Liu, L. Yang, L. Guo, J. Solid State Electrochem. 14, 2251–2256 (2010). https://doi.org/10.1007/s10008-010-1065-1

    Article  CAS  Google Scholar 

  30. N.S. Prinith, J.G. Manjunatha, G. Tigari, Z.A. Alothman, A.M. Alanazi, A. Pandith, ChemistrySelect. 6(40), 10746–10757 (2021). https://doi.org/10.1002/slct.202103184

    Article  CAS  Google Scholar 

  31. G. Tigari, J.G. Manjunatha, J. SCI –, ADV. MATER. DEV. (2019). https://doi.org/10.1016/j.jsamd.2019.11.001

    Article  Google Scholar 

  32. N. Hareesha, J.G. Manjunatha, J. SCI –, ADV. MATER. DEV. (2020). https://doi.org/10.1016/j.jsamd.2020.08.005

    Article  Google Scholar 

  33. C. Stefanov, C. Cioates Negut, L. Gugoasa, J. Staden, Microchem J. 155, 104729 (2020). https://doi.org/10.1016/j.microc.2020.104729

    Article  CAS  Google Scholar 

  34. B.M. Amrutha, J.G. Manjunatha Gowda, A.S. Bhat, P.A. Pushpanjali, J. Food Meas. Charact. 14, 3633–3643 (2020). https://doi.org/10.1007/s11694-020-00608-9

    Article  Google Scholar 

  35. B. Kanthappa, J.G. Manjunatha, N. Ataollahi, E. Taer, Z.M. Almarhoon, J. Electron. Mater. (2024). https://doi.org/10.1007/s11664-024-10934-z

    Article  Google Scholar 

  36. S.B. Arpitha, Kumara Swamy & Rukaya Banu. Sens. Technol. 1(1), 2258789 (2023). https://doi.org/10.1080/28361466.2023.2258789

    Article  Google Scholar 

  37. C. Li, C. Surf, B., 50(2), 147–151 (2006), https://doi.org/10.1016/j.colsurfb.2006.05.004

  38. N. Hareesha, J.G. Manjunatha, C. Raril, G. Tigari, ChemistrySelect. 4(15), 4559–4567 (2019). https://doi.org/10.1002/slct.201900794

    Article  CAS  Google Scholar 

  39. A. Nezamzadeh-Ejhieh, P. Pouladsaz, J. Ind. Eng. Chem. 20(4), 2146–2152 (2014). https://doi.org/10.1016/j.jiec.2013.09.044

    Article  CAS  Google Scholar 

  40. L.C. Gribat, J. Babauta, H. Beyenal, N.A. Wall, J. Electroanal. Chem. 798 (2017). https://doi.org/10.1016/j.jelechem.2017.05.008

  41. E.S. Sa, P.S. da Silva, C.L. Jost, A. Spinelli, Sens. Actuators B Chem. 209, 423–430 (2015). https://doi.org/10.1016/j.snb.2014.11.136

    Article  CAS  Google Scholar 

  42. J.G. Manjunatha, C. Raril, N. Hareesha, M.M. Charithra, P.A. Pushpanjali, G. Tigari, D.K. Ravishankar, S.C. Mallappaji, J. Gowda, Open. Chem. Eng. J. 14, 90–98 (2020). https://doi.org/10.2174/1874123102014010090

    Article  CAS  Google Scholar 

  43. K. Węgiel, B. Baś, J. Electrochem. Soc. 165(7) (2018). https://doi.org/10.1149/2.1201807jes. H393-H398

  44. D.O. Ribeiro, D.C. Pinto, L.M.T.R. Lima, N.M. Volpato, L.M. Cabral, V.P. de Sousa, Nutr. J. 10(1), 47–40 (2011). https://doi.org/10.1186/1475-2891-10-47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. A.A. Ensafi, E. Heydari-Bafrooei, M. Amini, Biosens. Bioelectron. 31(1), 376–381 (2012). https://doi.org/10.1016/j.bios.2011.10.050

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

(1) J.G. Manjunatha gratefully acknowledges the financial support from VGST, Bangalore under Research project. No. K-FIST (L2)/GRD-1020/2021-22/430. (2) Sameh. M. Osman gratefully acknowledges the financial support from Researchers Supporting Project Number (RSP2024R405), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamballi G. Manjunatha.

Ethics declarations

Ethical issues

No ethical issues for this work.

Conflict of interest

No conflict of interest with any organization, reviewers and authors in this work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shetty, L., Manjunatha, J.G., Madappa, S.B. et al. Electrochemical sensing of lactochrome in pharmaceutical sample using L-asparagine layered carbon based sensor. Food Measure (2024). https://doi.org/10.1007/s11694-024-02551-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11694-024-02551-5

Keywords

Navigation