Skip to main content
Log in

Electrochemical Preparation of Poly(arginine)-Modified Carbon Nanotube Paste Electrode and its Application for the Determination of Pyridoxine in the Presence of Riboflavin: An Electroanalytical Approach

  • Original Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

A simple poly(arginine) film-modified carbon nanotube paste electrode (PAMCNTPE) was prepared using cyclic voltammetry (CV). The devised sensor was subjected to field-emission scanning electron microscope (FESEM) and CV characterization. The sensing of 0.1 mM pyridoxine (PY) was upgraded at PAMCNTPE as compared to the bare carbon nanotube paste electrode (BCNTPE). The PAMCNTPE detects the 0.1 mM PY at a specific potential 0.727 V with a current response of 10.68 µA. In the case of BCNTPE, the PY appeared at 0.798 V with a current 2.90 µA. The proposed analytical method was optimized by prime parameters such as the impact scan rate, pH and PY concentration. Under optimal conditions, the concentration of PY is directly proportional to oxidation current (Ipa) in linear range 2–10 µM, and 10–80 µM with a detection limit (LOD) of 9.6 × 10−7 M and limit of quantification (LOQ) of 3.21 × 10−6 M. The simultaneous determination, concentration variation analysis of PY is performed with riboflavin (RF) and interference analysis in detecting PY also examined. The proposed sensor was effectively applied for the determination of PY in natural food supplement with excellent recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Jyoti TB, Nandibewoor ST. Modification of glassy carbon electrode by polybromocresol using cyclic voltammetry as a sensor and its analytical applications in determination of pyridoxine hydrochloride in commercial drinks. Anal. Bioanal. Electrochem. 2019;10(9):1144–62.

    Google Scholar 

  2. Liang T, Qingji X, Shouzhuo Y. Electrochemical and spectroelectrochemical studies on pyridoxine hydrochloride using a poly(methylene blue) modified electrode. Electroanalysis. 2004;16(19):1592–7.

    Article  CAS  Google Scholar 

  3. Nada FA, Ahmed G, Ekram HE, Asmaa RME. Effective and facile determination of vitamin B6 in human serum with CuO nanoparticles/ionic liquid crystal carbon based sensor. J Electrochem Soc. 2017;164(13):B730–8.

    Article  CAS  Google Scholar 

  4. Hernandez SR, Ribero GG, Goicoechea HC. Enhanced application of square wave voltammetry with glassy carbon electrode coupled to multivariate calibration tools for the determination of B6 and B12 vitamins in pharmaceutical preparations. Talanta. 2003;61(5):743–53.

    Article  CAS  PubMed  Google Scholar 

  5. Qu W, Wu K, Hu S. Voltammetric determination of pyridoxine (vitamin B6) by use of a chemically-modified glassy carbon electrode. J Pharm Biomed Anal. 2004;36(3):631–5.

    Article  CAS  PubMed  Google Scholar 

  6. Tigari G, Manjunatha JG, Raril C, Hareesha N. Determination of riboflavin at carbon nanotube paste electrodes modified with an anionic surfactant. ChemistrySelect. 2019;4(7):2168–73.

    Article  CAS  Google Scholar 

  7. Krystian W, Boguslaw B. Voltammetric characteristics and determination of riboflavin at the different metallic bulk annular band electrodes. J Electrochem Soc. 2018;165(7):H393–8.

    Article  CAS  Google Scholar 

  8. Selvarajan S, Suganthi A, Rajarajan M. A facile synthesis of ZnO/manganese hexacyanoferrate nanocomposite modified electrode for the electrocatalytic sensing of riboflavin. J Phys Chem Solids. 2018;121:350–9.

    Article  CAS  Google Scholar 

  9. Vinas P, Balsalobre N, Lopez-Erroz C, Hernandez-Cordoba M. Determination of vitamin B6 compounds in foods using liquid chromatography with post-column derivatization fluorescence detection. Chromatographia. 2004;59(5–6):381–6.

    CAS  Google Scholar 

  10. Jinghe Y, Rongjiang H, Benyu SU, Cunguo L, Naixing W, Jingtian HU. Simultaneous determination of four components in composite vitamin B tablets using a square root Kalman-filter. Anal Sci. 1998;14(5):965–9.

    Article  Google Scholar 

  11. Marti-Andres P, Escuder-Gilabert L, Martin-Biosca Y, Sagrado S, Medina-Hernandez MJ. Simultaneous determination of pyridoxine and riboflavin in energy drinks by high-performance liquid chromatography with fluorescence detection. J Chem Educ. 2015;92(5):903–6.

    Article  CAS  Google Scholar 

  12. Devaraj M, Saravanan R, Jiaqian Q, Elumalai S, Mehmet LY, Necip A, Gracia F, Rabah B, Gracia-Pinilla MA, Gupta VK. Heterostructures of mesoporous TiO2 and SnO2 nanocatalyst for improved electrochemical oxidation ability of vitamin B6 in pharmaceutical tablets. J Colloid Interface Sci. 2019;542:45–53.

    Article  CAS  Google Scholar 

  13. Alemu M, Saini RC, Tadese A, Rishi P. Square wave voltammetric determination of pyridoxine in pharmaceutical preparations using cobalt hexacyanoferrate modified carbon paste electrode. J. Chem. Pharm. Res. 2014;6(1):544–51.

    Google Scholar 

  14. Purvi BD, Rahul MK, Ashwini KS. Electrochemical behaviour of pyridoxine hydrochloride (vitamin B6) at carbon paste electrode modified with crown ethers. J Solid State Electrochem. 2008;12(9):1067–75.

    Article  CAS  Google Scholar 

  15. Habibia B, Phezhhana H, Pournaghi-Azarb MH. Voltammetric determination of vitamin B6 (pyridoxine) using multi wall carbon nanotube modified carbon-ceramic electrode. J Iran Chem Soc. 2010;7(2):S103–12.

    Article  Google Scholar 

  16. Mohammed AK, Omar AH, Ohsaka T, Awad MI. Electroanalysis of pyridoxine at copper nanoparticles modified polycrystalline gold electrode. Electroanalysis. 2016;28(3):539–45.

    Article  CAS  Google Scholar 

  17. Jazreen HQL, Yanni Y, Rakesh G, Richard DW. Electrochemical study of pyridoxine (vitamin B6) in acetonitrile. ChemElectroChem. 2014;2(3):412–20.

    Google Scholar 

  18. Mohammadhassan M, Mohsen BS, Mahdi G, Ebrahim H. Electro-deposition of gold nanostructures on carbon paste electrode: a platform with signal amplification for voltammetric study and determination of pyridoxine (vitamin B6). Russ J Electrochem. 2016;52(5):477–87.

    Article  CAS  Google Scholar 

  19. Beitollahi H, Fahimeh M, Somayeh T, Shohreh J. A review on the effects of introducing CNTs in the modification process of electrochemical sensors. Electroanalysis. 2019;31(7):1195–203.

    Article  CAS  Google Scholar 

  20. Punbusayakul N. Carbon nanotubes architectures in electroanalysis. Procedia Eng. 2012;32:683–9.

    Article  CAS  Google Scholar 

  21. Manjunatha JG. Highly sensitive polymer based sensor for determination of the drug mitoxantrone. J. Surf Sci. Technol. 2018;34(1–2):74–80.

    Article  CAS  Google Scholar 

  22. Manjunatha JG. Poly (nigrosine) modified electrochemical sensor for the determination of dopamine and uric acid: a cyclic voltammetric study. Int. J. Chem Tech Res. 2016;9(2):136–46.

    CAS  Google Scholar 

  23. Raril C, Manjunatha JG. Cyclic voltammetric investigation of caffeine at methyl orange modified carbon paste electrode. Biomed J Sci Tech Res. 2018;9(3):1–6.

    Google Scholar 

  24. Manjunatha JG, Kumara Swamy BE, Deraman M. Electrochemical studies of dopamine, ascorbic acid and their simultaneous determination at a poly (rosaniline) modified carbon paste electrode: a cyclic voltammetric study. Anal. Bioanal. Electrochem. 2013;5(4):426–38.

    CAS  Google Scholar 

  25. Raril C, Manjunatha JG. A sensitive and selective procedure for the voltammetric determination of brilliant indigo and acid yellow 23 at surfactant modified graphene paste electrode. J. Mater. Environ. Sci. 2019;10(6):510–9.

    Google Scholar 

  26. Sangili A, Veerakumar P, Chen SM, Rajkumar C, Lin KC. Voltammetric determination of vitamin B2 by using a highly porous carbon electrode modified with palladium-copper nanoparticles. Microchim Acta. 2019;186:299.

    Article  CAS  Google Scholar 

  27. Raril C, Manjunatha JG. Sensitive electrochemical analysis of resorcinol using polymer modified carbon paste electrode: a cyclic voltammetric study. Anal. Bioanal. Electrochem. 2018;10(4):488–98.

    CAS  Google Scholar 

  28. Manjunatha JG. A novel poly (glycine) biosensor towards the detection of indigo carmine: a voltammetric study. J. Food Drug Anal. 2018;26(1):292–9.

    Article  CAS  PubMed  Google Scholar 

  29. Barbara B, Elio D. Voltammetric determination of vitamin B6 in food samples and dietary supplements. J Food Compos Anal. 2014;33(2):155–60.

    Article  CAS  Google Scholar 

  30. Liu G, Wang YM, Sun DM. Simultaneous determination of vitamins B2, B6 and C using silver-doped poly(l-arginine)-modified glassy carbon electrode. J Anal Chem. 2016;71(1):102–9.

    Article  CAS  Google Scholar 

  31. Darko K, Muslim K, Eda M, Ruqia N, Naser Ramdan RA, Dalibor MS. Determination of pyridoxine (vitamin B6) in pharmaceuticals and urine samples using unmodified boron-doped diamond electrode. Diam Relat Mater. 2016;64:184–9.

    Article  CAS  Google Scholar 

  32. Marcos FST, Glimaldo M, Edward RD, Eder TGC. Voltammetric determination of pyridoxine (vitamin B6) at a carbon paste electrode modified with vanadyl(IV)–Salen complex. Anal Chim Acta. 2004;508(1):79–85.

    Article  CAS  Google Scholar 

  33. Ranjith Kumar D, Manoj D, Santhanalakshmi J, Shim JJ. Au–CuO core-shell nanoparticles design and development for the selective determination of vitamin B6. Electrochim Acta. 2015;176:514–22.

    Article  CAS  Google Scholar 

  34. Moreno V, Liorent-Martinez EJ, Zougagh M, Rios A. Decoration of multi-walled carbon nanotubes with metal nanoparticles in supercritical carbon dioxide medium as a novel approach for the modification of screen-printed electrodes. Talanta. 2016;161:775–9.

    Article  CAS  PubMed  Google Scholar 

  35. Hadiseh S, Beitollahi H. Graphene/ZnO nanocomposite for voltammetric sensing of vitamin B6 using modified glassy carbon electrode. Anal. Bioanal. Electrochem. 2016;8(6):732–40.

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the VGST, Bangalore, under Research Project No. KSTePS/VGST—KFIST (L1)2016–2017/GRD-559/2017-18/126/333, 21/11/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Manjunatha.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tigari, G., Manjunatha, J.G. Electrochemical Preparation of Poly(arginine)-Modified Carbon Nanotube Paste Electrode and its Application for the Determination of Pyridoxine in the Presence of Riboflavin: An Electroanalytical Approach. J. Anal. Test. 3, 331–340 (2019). https://doi.org/10.1007/s41664-019-00116-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-019-00116-w

Keywords

Navigation