Skip to main content
Log in

Voltammetric detection of riboflavin based on ordered mesoporous carbon modified electrode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The potential application of ordered mesoporous carbon (OMC)-modified glassy carbon electrode (OMC/GCE) in electrochemistry as a novel electrode material was investigated. X-ray diffraction, transmission electron micrographs, and cyclic voltammetry were used to characterize the structure and electrochemical behaviors of this material. Compared to GC electrode, the peak currents of potassium ferricyanide (K3[Fe(CN)6]) increase and the peak potential separation (ΔE p) decreases at the OMC/GC electrode. These phenomena suggest that OMC-modified GC electrode possesses larger electrode area and faster electron transfer rate, as compared with bare GC electrode. Furthermore, riboflavin was detected using OMC/GC electrode in aqueous solutions. The results showed that, under an optimum condition (pH 7.0), the OMC/GC electrode exhibited excellent response performance to riboflavin in the concentration range of 4.0 × 10−7 to 1.0 × 10−6 M with a high sensitivity of 769 µA mM−1. The detection limit was down to around 2 × 10−8 M. With good stability and reproducibility, the present OMC/GC electrode was applied in the determination of vitamin B2 content in vitamin tablets, and satisfactory results were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Friedrich W (1988) Vitamins. Walter de Gruyter, Berlin, pp 404–409

    Google Scholar 

  2. Müller F (ed) (1991) Chemistry and biochemistry of flavoenzymes, vol. 1. CRC, Boca Raton

  3. Heelis PF (1982) Chem Soc Rev 11:15–39

    Article  CAS  Google Scholar 

  4. Silva E, Edwards AM (2006) Flavins. Photochemistry and photobiology, comprehensive series in photochemistry and photobiology, vol. 6. The Royal Society of Chemistry, Cambridge

  5. Ghasemi J, Abbasi B, Niazi A, Nadaf E, Mordai A (2004) Anal Lett 37:2609–2623

    Article  CAS  Google Scholar 

  6. The Pharmacopoeia of People’s Republic of China (1995) Part II. Society of Pharmacopoeia Department, Beijing, pp 819–821

  7. Mattivi F, Monetti A, Vrhovsek U, Tonon D, Andres-Lacueva C (2000) J Chromatogr A 888:121–127

    Article  CAS  Google Scholar 

  8. Chu KO, Tin KC (1998) Anal Lett 31:2707–2715

    CAS  Google Scholar 

  9. Russell LF, Brooks L, Mcrae KB (1998) Food Chem 63:125–131

    Article  CAS  Google Scholar 

  10. Greenway GM, Kometa N (1994) Analyst 119:929–935

    Article  CAS  Google Scholar 

  11. Cataldi TRI, Nardiello D, Carrara V, Ciriello R, Benedetto GED (2003) Food Chem 82:309–314

    Article  CAS  Google Scholar 

  12. Wang J, Luo DB, Farias PAM, Mahmoud JS (1985) Anal Chem 57:158–162

    Article  CAS  Google Scholar 

  13. Economou A, Fielden PR (1995) Electroanalysis 7:447–453

    Article  CAS  Google Scholar 

  14. Peng WF, Li HM, Wang EK (1994) J Electroanal Chem 375:185–192

    Article  CAS  Google Scholar 

  15. Gorton L, Johansson G (1980) J Electroanal Chem 113:151–158

    Article  CAS  Google Scholar 

  16. Jafarian M, Forouzandeh F, Danaee I, Gobal F, Mahjani MG (2009) J Solid State Electrochem 13:1171–1179

    Article  CAS  Google Scholar 

  17. Vonau W, Gerlach F, Enseleit U, Spindler J, Bachmann T (2009) J Solid State Electrochem 13:91–98

    Article  CAS  Google Scholar 

  18. Intelmann CM, Rammelt U, Plieth W, Cai X, Jähne E, Adler HP (2007) J Solid State Electrochem 11:1–9

    Article  Google Scholar 

  19. Li NB, Ren W, Luo HQ (2008) J Solid State Electrochem 12:693–699

    Article  CAS  Google Scholar 

  20. Liang C, Dai S (2006) J Am Chem Soc 128:5316–5317

    Article  CAS  Google Scholar 

  21. Kim JM, Stucky GD (2000) Chem Commun 13:1159–1160

    Article  Google Scholar 

  22. Walcarius A (2005) C R Chim 8:693–712

    CAS  Google Scholar 

  23. Jun S, Joo SH, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O (2000) J Am Chem Soc 122:10712–10713

    Article  CAS  Google Scholar 

  24. Vinu A, Miyahara M, Ariga K (2005) J Phys Chem B 109:6436–6441

    Article  CAS  Google Scholar 

  25. Hartmann M, Vinu A, Chandrasekar G (2005) Chem Mater 17:829–833

    Article  CAS  Google Scholar 

  26. Zhou H, Zhu S, Hibino M, Honma I (2003) J Power Sources 122:219–223

    Article  CAS  Google Scholar 

  27. Zhou M, Ding J, Guo LP, Shang QK (2007) Anal Chem 79:5328–5335

    Article  CAS  Google Scholar 

  28. Zhou M, Shang L, Li BL, Huang LJ, Dong SJ (2008) Electrochem Commun 10:859–863

    Article  CAS  Google Scholar 

  29. Jia NQ, Wang ZY, Yang GF, Shen HB, Zhu LZ (2007) Electrochem Commun 9:233–238

    Article  CAS  Google Scholar 

  30. Yu JJ, Yu DL, Zhao T, Zeng BZ (2008) Talanta 74:1586–1591

    Article  CAS  Google Scholar 

  31. Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) J Am Chem Soc 120:6024–6036

    Article  CAS  Google Scholar 

  32. Bard A, Faulkner LR (2000) Electrochemical methods—fundamentals and application. Wiley, New York

    Google Scholar 

  33. Gao XH, Wei WZ, Yang L, Guo ML (2006) Electroanalysis 18:485–492

    Article  CAS  Google Scholar 

  34. Laviron E (1974) J Electroanal Chem 52:355–393

    Article  CAS  Google Scholar 

  35. Berchmans S, Vijayavalli R (1995) Langmuir 11:286–290

    Article  CAS  Google Scholar 

  36. Ichinose N, Adachi K, Schwedt G (1985) Analyst 110:1505–1508

    Article  CAS  Google Scholar 

  37. Breyer B, Biegler T (1959/60) J Electroanal Chem 1:453–457

    Article  Google Scholar 

  38. Mielech K (2003) Trace Microprobe Tech 21:111–121

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support by the National Natural Science Foundation of China (No. 20875012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liping Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, J., Ndamanisha, J.C., Liu, L. et al. Voltammetric detection of riboflavin based on ordered mesoporous carbon modified electrode. J Solid State Electrochem 14, 2251–2256 (2010). https://doi.org/10.1007/s10008-010-1065-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1065-1

Keywords

Navigation