Skip to main content
Log in

Controlling release patterns of the bioactive compound by structural and environmental conditions: a review

  • Review Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

In recent years, new delivery systems have been emerged in the food industry by developing structures to control the release of bioactive compounds. To design a potential delivery system, evaluating parameters that affect release behavior of bioactive compounds should be considered. Therefore, the major objective of this study is to focus on the effect of structural and environmental conditions on the release patterns of bioactive compounds. Encapsulation systems and controlled-release packings are the most common structures to deliver bioactive compounds. The release behaviors of bioactive compounds from delivery systems depends on types of allocated materials and methods, affecting factors the structure of delivery systems, and environmental conditions. These parameters will be thoroughly discussed in this review paper by providing the results of recent studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. Zhang et al., A comprehensive review on natural bioactive films with controlled release characteristics and their applications in foods and pharmaceuticals. Trends Food Sci. Technol. 112, 690–707 (2021)

    Article  CAS  Google Scholar 

  2. A.F. Esfanjani, S.M. Jafari, Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds. Coll. Surf. B 146, 532–543 (2016)

    Article  Google Scholar 

  3. L. Kuai et al., Controlled release of antioxidants from active food packaging: a review. Food Hydrocoll. 120, 106992 (2021)

    Article  CAS  Google Scholar 

  4. T. Dib, H. Pan, S. Chen, Recent advances in pectin-based nanoencapsulation for enhancing the bioavailability of bioactive compounds: curcumin oral bioavailability. Food Rev. Int. 2022, 1–19 (2022)

    Article  Google Scholar 

  5. A.C. Pinheiro et al., Κ-carrageenan/chitosan nanolayered coating for controlled release of a model bioactive compound. Innov. Food Sci. Emerg. Technol. 16, 227–232 (2012)

    Article  CAS  Google Scholar 

  6. Q. Ma et al., Physical, mechanical, and antimicrobial properties of chitosan films with microemulsions of cinnamon bark oil and soybean oil. Food Hydrocoll. 52, 533–542 (2016)

    Article  CAS  Google Scholar 

  7. N. Aditya et al., Co-delivery of hydrophobic curcumin and hydrophilic catechin by a water-in-oil-in-water double emulsion. Food Chem. 173, 7–13 (2015)

    Article  CAS  PubMed  Google Scholar 

  8. A. Celebioglu et al., Encapsulation of camphor in cyclodextrin inclusion complex nanofibers via polymer-free electrospinning: enhanced water solubility, high temperature stability, and slow release of camphor. J. Mater. Sci. 53(7), 5436–5449 (2018)

    Article  CAS  Google Scholar 

  9. G. Zhu, G. Zhu, Z. Xiao, A review of the production of slow-release flavor by formation inclusion complex with cyclodextrins and their derivatives. J. Incl. Phenom. Macrocyclic Chem. 95(1), 17–33 (2019)

    Article  CAS  Google Scholar 

  10. X. Song et al., UV-mediated solid-state cross-linking of electrospinning nanofibers of modified collagen. Int. J. Biol. Macromol. 120, 2086–2093 (2018)

    Article  CAS  PubMed  Google Scholar 

  11. S. Ranjbaryan, B. Pourfathi, H. Almasi, Reinforcing and release controlling effect of cellulose nanofiber in sodium caseinate films activated by nanoemulsified cinnamon essential oil. Food Packag. Shelf Life 21, 100341 (2019)

    Article  Google Scholar 

  12. I. Gholamali, Stimuli-responsive polysaccharide hydrogels for biomedical applications: a review. Regen Eng. Transl Med 7(1), 91–114 (2021)

    Article  CAS  Google Scholar 

  13. F. Cuomo et al., Progress in colloid delivery systems for protection and delivery of phenolic bioactive compounds: two study cases—hydroxytyrosol and curcumin. Molecules 27(3), 921 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. L. Mahalakshmi et al., Micro-and nano-encapsulation of β-carotene in zein protein: size-dependent release and absorption behavior. Food Funct. 11(2), 1647–1660 (2020)

    Article  PubMed  Google Scholar 

  15. A. Jain et al., Microencapsulation by complex coacervation using whey protein isolates and gum acacia: an approach to preserve the functionality and controlled release of β-carotene. Food Bioprocess Technol. 8(8), 1635–1644 (2015)

    Article  CAS  Google Scholar 

  16. J.K. Yan et al., Biocompatible polyelectrolyte complex nanoparticles from lactoferrin and pectin as potential vehicles for antioxidative curcumin. J. Agric. Food Chem 65(28), 5720–5730 (2017)

    Article  CAS  PubMed  Google Scholar 

  17. C. Tan et al., Polysaccharide-based nanoparticles by chitosan and gum arabic polyelectrolyte complexation as carriers for curcumin. Food Hydrocoll. 57, 236–245 (2016)

    Article  CAS  Google Scholar 

  18. F. Ji et al., Engineering pectin-based hollow nanocapsules for delivery of anticancer drug. Carbohydr. Polym. 177, 86–96 (2017)

    Article  CAS  PubMed  Google Scholar 

  19. E.P. da Silva et al., Drug release profile and reduction in the in vitro burst release from pectin/HEMA hydrogel nanocomposites crosslinked with titania. RSC Adv. 6(23), 19060–19068 (2016)

    Article  Google Scholar 

  20. L.W. Wong et al., Preparation of antimicrobial active packaging film by capacitively coupled plasma treatment. LWT 117, 108612 (2020)

    Article  CAS  Google Scholar 

  21. N. Mohsenabadi et al., Physical and antimicrobial properties of starch-carboxy methyl cellulose film containing rosemary essential oils encapsulated in chitosan nanogel. Int. J. Biol. Macromol. 112, 148–155 (2018)

    Article  CAS  PubMed  Google Scholar 

  22. S.K. Pankaj et al., Surface, thermal and antimicrobial release properties of plasma-treated zein films. J. Renew. Mater. 2(1), 77–84 (2014)

    Article  Google Scholar 

  23. G.P. Bruni et al., Electrospun β-carotene–loaded SPI: PVA fiber mats produced by emulsion-electrospinning as bioactive coatings for food packaging. Food Packag. Shelf Life 23, 100426 (2020)

    Article  Google Scholar 

  24. M.A. Moreno et al., Crosslinked electrospun zein-based food packaging coatings containing bioactive chilto fruit extracts. Food Hydrocoll. 95, 496–505 (2019)

    Article  CAS  Google Scholar 

  25. L. Hu et al., Multilayer encapsulated mesoporous silica nanospheres as an oral sustained drug delivery system for the poorly water-soluble drug felodipine. Mater. Sci. Eng. C 47, 313–324 (2015)

    Article  CAS  Google Scholar 

  26. A.C. Pinheiro et al., Chitosan/fucoidan multilayer nanocapsules as a vehicle for controlled release of bioactive compounds. Carbohydr. Polym. 115, 1–9 (2015)

    Article  CAS  PubMed  Google Scholar 

  27. J. Carpenter, S. George, V.K. Saharan, Curcumin encapsulation in multilayer oil-in-water emulsion: synthesis using ultrasonication and studies on stability and antioxidant and release activities. Langmuir 35(33), 10866–10876 (2019)

    Article  CAS  PubMed  Google Scholar 

  28. J. Bouman et al., Controlled release from zein matrices: interplay of drug hydrophobicity and pH. Pharm. Res. 33(3), 673–685 (2016)

    Article  CAS  PubMed  Google Scholar 

  29. Y.F. Tan et al., Controlled-release nanotherapeutics: state of translation. J. Controll. Release 284, 39–48 (2018)

    Article  CAS  Google Scholar 

  30. H. Almasi, M. Jahanbakhsh Oskouie, A. Saleh, A review on techniques utilized for design of controlled release food active packaging. Crit. Rev. Food Sci. Nutr. 61(15), 2601–2621 (2021)

    Article  CAS  PubMed  Google Scholar 

  31. Y. Maghsoudlou, M. Sabaghi, M. Kashiri (2019) Preparation and characterization of a biodegradable film comprising polyvinyl alcohol in balangu seed gum. J. Package. Technol. Res. 3(1), 3–10. https://doi.org/10.1007/s41783-018-0050-5

    Article  Google Scholar 

  32. H. Almasi, S. Azizi, S. Amjadi, Development and characterization of pectin films activated by nanoemulsion and pickering emulsion stabilized marjoram (Origanum majorana L.) essential oil. Food Hydrocoll. 99, 105338 (2020)

    Article  CAS  Google Scholar 

  33. R.R. Costa, M. Alatorre-Meda, J.F. Mano, Drug nano-reservoirs synthesized using layer-by-layer technologies. Biotechnol. Adv. 33(6), 1310–1326 (2015)

    Article  CAS  PubMed  Google Scholar 

  34. E. Assadpour, S.M. Jafari, Y. Maghsoudlou, Evaluation of folic acid release from spray dried powder particles of pectin-whey protein nano-capsules. Int. J. Biol. Macromol. 95, 238–247 (2017)

    Article  CAS  PubMed  Google Scholar 

  35. M. Sabaghi et al., Evaluation of release mechanism of catechin from chitosan-polyvinyl alcohol film by exposure to gamma irradiation. Carbohydr. Polym. 230, 115589 (2020)

    Article  CAS  PubMed  Google Scholar 

  36. X. Hu et al., Microwave-assisted synthesis of nutgall tannic acid–based salecan polysaccharide hydrogel for tunable release of β-lactoglobulin. Int. J. Biol. Macromol. 161, 1431–1439 (2020)

    Article  CAS  PubMed  Google Scholar 

  37. J. He, X. Tong, Y.J.M. Zhao, Photoresponsive nanogels based on photocontrollable cross-links. Macromolecules 42(13), 4845–4852 (2009)

    Article  CAS  Google Scholar 

  38. X. Wen et al., Transglutaminase induced gels using bitter apricot kernel protein: chemical, textural and release properties. Food Biosci. 26, 15–22 (2018)

    Article  CAS  Google Scholar 

  39. Jayanudin et al., Preparation of chitosan microcapsules containing red ginger oleoresin using emulsion crosslinking method. J. Appl. Biomater. Funct. Mater. 17(1), 2280800018809917 (2019)

    CAS  PubMed  Google Scholar 

  40. J. Fraj et al., Encapsulation and release of vitamin C in double W/O/W emulsions followed by complex coacervation in gelatin-sodium caseinate system. J. Food Eng. 292, 110353 (2021)

    Article  CAS  Google Scholar 

  41. F.A. Whitehead et al., Controlled release of ascorbic acid from genipin-crosslinked gelatin matrices under moving boundary conditions. Food Hydrocoll. 89, 171–179 (2019)

    Article  CAS  Google Scholar 

  42. Y. Hu et al., Study on the preparation and drug release property of soybean selenoprotein/carboxymethyl chitosan composite hydrogel. J. Polym. Eng. 38(10), 963–970 (2018)

    Article  CAS  Google Scholar 

  43. M. Li et al., Effects of genipin concentration on cross-linked β-casein micelles as nanocarrier of naringenin: Colloidal properties, structural characterization and controlled release. Food Hydrocoll. 108, 105989 (2020)

    Article  CAS  Google Scholar 

  44. M. Ubaid, G. Murtaza, Fabrication and characterization of genipin cross-linked chitosan/gelatin hydrogel for pH-sensitive, oral delivery of metformin with an application of response surface methodology. Int. J. Biol. Macromol. 114, 1174–1185 (2018)

    Article  CAS  PubMed  Google Scholar 

  45. Z. Liu et al., Fabrication and characterization of cold-gelation whey protein-chitosan complex hydrogels for the controlled release of curcumin. Food Hydrocoll. 103, 105619 (2020)

    Article  CAS  Google Scholar 

  46. F.E. Koc, T.G. Altıncekic, Investigation of gelatin/chitosan as potential biodegradable polymer films on swelling behavior and methylene blue release kinetics. Polym. Bull. 78, 1–16 (2020)

    Google Scholar 

  47. R. Nayak et al., Transport of curcumin from cross-linked chitosan matrices: a comparative study, in IOP conference series: materials science and engineering. (IOP Publishing, USA, 2019)

    Google Scholar 

  48. P. Hiwale et al., In vitro release of lysozyme from gelatin microspheres: effect of cross-linking agents and thermoreversible gel as suspending medium. Biomacromolecules 12(9), 3186–3193 (2011)

    Article  CAS  PubMed  Google Scholar 

  49. B.Z. Chen et al., Controlled delivery of insulin using rapidly separating microneedles fabricated from Genipin-crosslinked gelatin. Macromol. Rapid Commun. 39(20), 1800075 (2018)

    Article  Google Scholar 

  50. R. Cui et al., Antimicrobial film based on polylactic acid and carbon nanotube for controlled cinnamaldehyde release. J. Mater. Res. Technol. 9(5), 10130–10138 (2020)

    Article  CAS  Google Scholar 

  51. C. Vasile et al., Biocompatible materials based on plasticized poly (lactic acid), chitosan and rosemary ethanolic extract I effect of chitosan on the properties of plasticized poly (lactic acid) materials. Polymers 11(6), 941 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. S. Tunç, O. Duman, Technology, Preparation of active antimicrobial methyl cellulose/carvacrol/montmorillonite nanocomposite films and investigation of carvacrol release. LWT-Food Sci. Technol. 44(2), 465–472 (2011)

    Article  Google Scholar 

  53. P. Khatri et al., Role of plasticizer in membrane coated extended release oral drug delivery system. J. Drug Deliv. Sci. Technol. 44, 231–243 (2018)

    Article  CAS  Google Scholar 

  54. H.M. Azeredo et al., Edible films from alginate-acerola puree reinforced with cellulose whiskers. LWT-Food Sci. Technol. 46(1), 294–297 (2012)

    Article  CAS  Google Scholar 

  55. P. Di Donato et al., Vegetable wastes derived polysaccharides as natural eco-friendly plasticizers of sodium alginate. Carbohydr. Poly. 229, 115427 (2020)

    Article  Google Scholar 

  56. P. Veiga-Santos et al., Sucrose and inverted sugar as plasticizer. Effect on cassava starch–gelatin film mechanical properties, hydrophilicity and water activity. Carbohydr. Polym. 103(2), 255–262 (2007)

    CAS  Google Scholar 

  57. M.R. Yazdani et al., Ionic cross-linked polyvinyl alcohol tunes vitrification and cold-crystallization of sugar alcohol for long-term thermal energy storage. Green Chem. 22(16), 5447–5462 (2020)

    Article  CAS  Google Scholar 

  58. M. Zdanowicz, P. Staciwa, T. Spychaj, Low transition temperature mixtures (LTTM) containing sugars as potato starch plasticizers. Starch-Stärke 71(9–10), 1900004 (2019)

    Article  Google Scholar 

  59. T.T. Tran, P.H. Tran, Controlled release film forming systems in drug delivery: the potential for efficient drug delivery. Pharmaceutics 11(6), 290 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. L. Moradkhannejhad et al., The effect of molecular weight and content of PEG on in vitro drug release of electrospun curcumin loaded PLA/PEG nanofibers. J. Drug Deliv. Sci. Technol. 56, 101554 (2020)

    Article  CAS  Google Scholar 

  61. V. Dias et al., Influence of plasticizer type and level on drug release from ethylcellulose barrier membrane multiparticulates (Controlled Release Society Annual Meeting and Exposition, Copenhagen, 2009)

    Google Scholar 

  62. Y. Peng et al., Optimization and release evaluation for tea polyphenols and chitosan composite films with regulation of glycerol and tween. Food Sci. Technol. 40, 162–170 (2019)

    Article  Google Scholar 

  63. P. Holcapkova et al., Effect of polyethylene glycol plasticizer on long-term antibacterial activity and the release profile of bacteriocin nisin from polylactide blends. Poly. Adv. Technol. 29(8), 2253–2263 (2018)

    Article  CAS  Google Scholar 

  64. S.Y. Chan et al., Rice starch thin films as a potential buccal delivery system: effect of plasticiser and drug loading on drug release profile. Int. J. Pharm. 562, 203–211 (2019)

    Article  CAS  PubMed  Google Scholar 

  65. T.N. da Silva et al., Chitosan-based films containing nanoemulsions of methyl salicylate: formulation development, physical-chemical and in vitro drug release characterization. Int. J. Biol. Macromol. 164, 2558–2568 (2020)

    Article  CAS  PubMed  Google Scholar 

  66. M. Sabaghi et al., Evaluation of release mechanism of catechin from chitosan-polyvinyl alcohol film by exposure to gamma irradiation. Carbohydr. Poly. 230, 115589 (2020)

    Article  CAS  Google Scholar 

  67. T. Huang et al., Physical properties and release kinetics of electron beam irradiated fish gelatin films with antioxidants of bamboo leaves. Food Biosci. 36, 100597 (2020)

    Article  CAS  Google Scholar 

  68. G. Bayer et al., Polyvinyl alcohol-based films plasticized with an edible sweetened gel enriched with antioxidant carminic acid. J. Food Eng. 323, 111000 (2022)

    Article  CAS  Google Scholar 

  69. S.R. Bajaj, S.J. Marathe, R.S. Singhal, Co-encapsulation of vitamins B12 and D3 using spray drying: wall material optimization, product characterization, and release kinetics. Food Chem. 335, 127642 (2021)

    Article  CAS  PubMed  Google Scholar 

  70. S. Tan, C. Zhong, T. Langrish, Encapsulation of caffeine in spray-dried micro-eggs for controlled release: the effect of spray-drying (cooking) temperature. Food Hydrocoll. 108, 105979 (2020)

    Article  CAS  Google Scholar 

  71. A. Bucurescu et al., Microencapsulation of curcumin by a spray-drying technique using gum arabic as encapsulating agent and release studies. Food Bioprocess Technol. 11(10), 1795–1806 (2018)

    Article  CAS  Google Scholar 

  72. J. Lucas et al., A new approach for the microencapsulation of curcumin by a spray drying method, in order to value food products. Powder Technol. 362, 428–435 (2020)

    Article  CAS  Google Scholar 

  73. E. Talón et al., Encapsulation of eugenol by spray-drying using whey protein isolate or lecithin: release kinetics, antioxidant and antimicrobial properties. Food Chem. 295, 588–598 (2019)

    Article  PubMed  Google Scholar 

  74. S. Tan, A. Ebrahimi, T. Langrish, Controlled release of caffeine from tablets of spray-dried casein gels. Food Hydrocoll. 88, 13–20 (2019)

    Article  CAS  Google Scholar 

  75. M. Fangmeier et al., Encapsulation of bioactive ingredients by extrusion with vibrating technology: advantages and challenges. Food Bioprocess Technol. 12(9), 1472–1486 (2019)

    Article  Google Scholar 

  76. N. Castro et al., Melt extrusion encapsulation of flavors: a review. Food Rev. 56(1), 137–186 (2016)

    CAS  Google Scholar 

  77. N.V. Varankovich et al., Evaluation of pea protein–polysaccharide matrices for encapsulation of acid-sensitive bacteria. Food Res. Int. 70, 118–124 (2015)

    Article  CAS  Google Scholar 

  78. Y.L. Xie et al., Controlled release of spirotetramat using starch–chitosan–alginate-encapsulation. Bull. Environ. Contam. Toxicol. 104(1), 149–155 (2020)

    Article  CAS  PubMed  Google Scholar 

  79. A. Vilchez et al., Applications of electrospun nanofibers with antioxidant properties: a review. Nanomaterials 10(1), 175 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. B. Kost et al., PLA/β-CD-based fibres loaded with quercetin as potential antibacterial dressing materials. Coll. Surf. B Biointerf. 190, 110949 (2020)

    Article  CAS  Google Scholar 

  81. J.A. Bhushani, N.K. Kurrey, C. Anandharamakrishnan, Nanoencapsulation of green tea catechins by electrospraying technique and its effect on controlled release and in-vitro permeability. J. Food Eng. 199, 82–92 (2017)

    Article  CAS  Google Scholar 

  82. Z. Wang et al., Characterization and bacteriostatic effects of β-cyclodextrin/quercetin inclusion compound nanofilms prepared by electrospinning. Food Chem. 338, 127980 (2021)

    Article  CAS  PubMed  Google Scholar 

  83. C. Shen et al., Chlorogenic acid-loaded sandwich-structured nanofibrous film developed by solution blow spinning: characterization, release behavior and antimicrobial activity. Food Packag. Shelf Life 32, 100854 (2022)

    Article  CAS  Google Scholar 

  84. H. Lee et al., Electrospun tri-layered zein/PVP-GO/zein nanofiber mats for providing biphasic drug release profiles. Int. J. Pharm. 531(1), 101–107 (2017)

    Article  CAS  PubMed  Google Scholar 

  85. P. Wang et al., Sequential electrospinning of multilayer ethylcellulose/gelatin/ethylcellulose nanofibrous film for sustained release of curcumin. Food Chem. 308, 125599 (2020)

    Article  CAS  PubMed  Google Scholar 

  86. J. Wu et al., Mechanism of a long-term controlled drug release system based on simple blended electrospun fibers. J. Controll. Release 320, 337–346 (2020)

    Article  CAS  Google Scholar 

  87. I. Ćorković et al., Hydrogels: characteristics and application as delivery systems of phenolic and aroma compounds. Foods 10(6), 1252 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  88. V.H. Pérez-Luna, O.J.G. González-Reynoso, Encapsulation of biological agents in hydrogels for therapeutic applications. Gels 4(3), 61 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  89. S. Shahbazizadeh et al., Development of cress seed gum hydrogel and investigation of its potential application in the delivery of curcumin. J. Sci. Food Agric. 101(15), 6505–6513 (2021)

    Article  CAS  PubMed  Google Scholar 

  90. Y. Zhang et al., Fabrication of chitosan gel droplets via crosslinking of inverse pickering emulsifications. Carbohyd. Poly. 186, 1–8 (2018)

    Article  Google Scholar 

  91. K. Abe et al., Effects of the PEG molecular weight of a PEG-lipid and cholesterol on PEG chain flexibility on liposome surfaces. Coll. Surf. A Physicochem. Eng. Asp. 474, 63–70 (2015)

    Article  CAS  Google Scholar 

  92. C. Sebaaly et al., Chitosan-coating effect on the characteristics of liposomes: a focus on bioactive compounds and essential oils: a review. Processes 9(3), 445 (2021)

    Article  CAS  Google Scholar 

  93. K. Tai et al., Effect of β-sitosterol on the curcumin-loaded liposomes: vesicle characteristics, physicochemical stability, in vitro release and bioavailability. Food Chem. 293, 92–102 (2019)

    Article  CAS  PubMed  Google Scholar 

  94. C. Tan, J. Wang, B. Sun, Biopolymer-liposome hybrid. systems for. controlled delivery of bioactive compounds: recent advances  Biotechnol. Adv. 48, 107727 (2021)

    Article  CAS  PubMed  Google Scholar 

  95. A.R. Machado et al., Liposomes loaded with phenolic extracts of Spirulina LEB-18: physicochemical characterization and behavior under simulated gastrointestinal conditions. Food Res. Int. 120, 656–667 (2019)

    Article  CAS  PubMed  Google Scholar 

  96. Z. Hammoud et al., New findings on the incorporation of essential oil components into liposomes composed of lipoid S100 and cholesterol. Int. J. Pharm. 561, 161–170 (2019)

    Article  CAS  PubMed  Google Scholar 

  97. W. Liu et al., Environmental stress stability of microencapsules based on liposomes decorated with chitosan and sodium alginate. Food Chem. 196, 396–404 (2016)

    Article  CAS  PubMed  Google Scholar 

  98. W. Zhou et al., Storage stability and skin permeation of vitamin C liposomes improved by pectin coating. Coll. Surf. B Biointerf. 117, 330–337 (2014)

    Article  CAS  Google Scholar 

  99. L.G. Gómez-Mascaraque et al., Microencapsulation structures based on protein-coated liposomes obtained through electrospraying for the stabilization and improved bioaccessibility of curcumin. Food Chem. 233, 343–350 (2017)

    Article  PubMed  Google Scholar 

  100. A.Z. Ghaleshahi, G. Rajabzadeh, The influence of sodium alginate and genipin on physico-chemical properties and stability of WPI coated liposomes. Food Res. Int. 130, 1089 (2020)

    Google Scholar 

  101. K.V. Kozhikhova et al., Preparation of chitosan-coated liposomes as a novel carrier system for the antiviral drug Triazavirin. Pharm. Dev. Technol. 23(4), 334–342 (2018)

    Article  CAS  PubMed  Google Scholar 

  102. R. Li et al., Liposomes coated with thiolated chitosan as drug carriers of curcumin. Mater. Sci. Eng. 80, 156–164 (2017)

    Article  CAS  Google Scholar 

  103. S. Alavi, A. Haeri, S.J.C.p. Dadashzadeh, Utilization of chitosan-caged liposomes to push the boundaries of therapeutic delivery. 157, 991–1012 (2017)

    CAS  Google Scholar 

  104. C. Tan et al., Biopolymer-coated liposomes by electrostatic adsorption of chitosan (chitosomes) as novel delivery systems for carotenoids. Food Hydrocoll. 52, 774–784 (2016)

    Article  CAS  Google Scholar 

  105. Y. Liu et al., Temperature-dependent structure stability and in vitro release of chitosan-coated curcumin liposome. Food Res. Int. 74, 97–105 (2015)

    Article  CAS  PubMed  Google Scholar 

  106. Z. Li, A.T. Paulson, F.T.A. Gill, Encapsulation of bioactive salmon protein hydrolysates with chitosan-coated liposomes. J. Funct. Foods 19, 733–743 (2015)

    Article  CAS  Google Scholar 

  107. H. Wang et al., Folate-PEG coated cationic modified chitosan–cholesterol liposomes for tumor-targeted drug delivery. Biomaterials 31(14), 4129–4138 (2010)

    Article  CAS  PubMed  Google Scholar 

  108. N. Li et al., Low molecular weight chitosan-coated liposomes for ocular drug delivery: in vitro and in vivo studies. Drug Deliv. 19(1), 28–35 (2012)

    Article  PubMed  Google Scholar 

  109. S. Peng et al., Hybrid liposomes composed of amphiphilic chitosan and phospholipid: preparation, stability and bioavailability as a carrier for curcumin. Carbohyd. Poly. 156, 322–332 (2017)

    Article  CAS  Google Scholar 

  110. E. Soo et al., Enhancing delivery and cytotoxicity of resveratrol through a dual nanoencapsulation approach. J. Coll. Interf. Sci. 462, 368–374 (2016)

    Article  CAS  Google Scholar 

  111. S. Jhan, A.M. Pethe, double-loaded liposomes encapsulating lycopene β-cyclodextrin complexes: preparation, optimization, and evaluation. J. Liposom. Res. 30(1), 80–92 (2020)

    Article  CAS  Google Scholar 

  112. A.M. Fernández-Romero et al., Novel findings about double-loaded curcumin-in-HPβcyclodextrin-in liposomes: effects on the lipid bilayer and drug release. Pharmaceutics 10(4), 256 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  113. Z. Li et al., Pluronics modified liposomes for curcumin encapsulation: sustained release, stability and bioaccessibility. Food Res. Int. 108, 246–253 (2018)

    Article  CAS  PubMed  Google Scholar 

  114. K. Tai et al., A comparison of physicochemical and functional properties of icaritin-loaded liposomes based on different surfactants. Coll. Surf. A Physicochem. Eng. Asp. 518, 218–231 (2017)

    Article  CAS  Google Scholar 

  115. C. Muñoz-Shugulí et al., Encapsulation of plant extract compounds using cyclodextrin inclusion complexes, liposomes, electrospinning and their combinations for food purposes. Trends Food Sci. Technol. 108, 177–186 (2021)

    Article  Google Scholar 

  116. L. Tian et al., Impact of tea polyphenols on the stability of oil-in-water emulsions coated by whey proteins. Food Chem 343, 128448 (2020)

    Article  PubMed  Google Scholar 

  117. L. Tian et al., Impact of tea polyphenols on the stability of oil-water emulsions coated by whey proteins. Food Chem. 343, 128448 (2021)

    Article  CAS  PubMed  Google Scholar 

  118. D.A. Guzmán-Díaz et al., Development and characterization of Gelled double emulsions based on Chia (Salvia hispanica L.) mucilage mixed with different biopolymers and loaded with green tea extract (Camellia sinensis). Foods 8(12), 677 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  119. S. Dutta et al., Nanoencapsulation of green tea polyphenols, in Nanoengineering in the beverage industry. (Elsevier, USA, 2020), pp.229–261

    Chapter  Google Scholar 

  120. P. Shao et al., Physical stabilities of taro starch nanoparticles stabilized pickering emulsions and the potential application of encapsulated tea polyphenols. Int. J. Biol. Macromol. 118, 2032–2039 (2018)

    Article  CAS  PubMed  Google Scholar 

  121. X. Zhu et al., Tuning complexation of carboxymethyl cellulose/cationic chitosan to stabilize Pickering emulsion for curcumin encapsulation. Food Hydrocoll. 110, 106135 (2021)

    Article  CAS  Google Scholar 

  122. D. Fu et al., Encapsulation of β-carotene in wheat gluten nanoparticle-xanthan gum-stabilized Pickering emulsions: enhancement of carotenoid stability and bioaccessibility. Food Hydrocoll. 89, 80–89 (2019)

    Article  CAS  Google Scholar 

  123. M. Matos et al., O/W emulsions stabilized by OSA-modified starch granules versus non-ionic surfactant: stability, rheological behaviour and resveratrol encapsulation. J. Food Eng. 222, 207–217 (2018)

    Article  CAS  Google Scholar 

  124. J. Yi et al., Development of pea protein and high methoxyl pectin colloidal particles stabilized high internal phase pickering emulsions for β-carotene protection and delivery. Food Hydrocoll. 113, 106497 (2021)

    Article  CAS  Google Scholar 

  125. Y. Jiang et al., Cinnamon essential oil pickering emulsion stabilized by zein-pectin composite nanoparticles: characterization, antimicrobial effect and advantages in storage application. Int. J. Biol. Macromol. 148, 1280–1289 (2020)

    Article  CAS  PubMed  Google Scholar 

  126. J. Han et al., Environmental stability and curcumin release properties of Pickering emulsion stabilized by chitosan/gum arabic nanoparticles. Int. J. Biol. Macromol. 157, 202–211 (2020)

    Article  CAS  PubMed  Google Scholar 

  127. G. Liu et al., Maillard-reacted whey protein isolates and epigallocatechin gallate complex enhance the thermal stability of the pickering emulsion delivery of curcumin. J. Agric. Food Chem. 67(18), 5212–5220 (2019)

    Article  CAS  PubMed  Google Scholar 

  128. J. Su et al., (2021) Electrostatic deposition of polysaccharide onto soft protein colloidal particles: enhanced rigidity and potential application as pickering emulsifiers. Food Hydrocoll. 110, 106147 (2021)

    Article  CAS  Google Scholar 

  129. M. Chouaibi et al., Experimental study of quercetin microencapsulation using water-in-oil-in-water (W1/O/W2) double emulsion. J. Mol. Liq. 273, 183–191 (2019)

    Article  CAS  Google Scholar 

  130. A. Fechner et al., Stability and release properties of double-emulsions stabilised by caseinate–dextran conjugates. Food Hydrocoll. 21(5–6), 943–952 (2007)

    Article  CAS  Google Scholar 

  131. X. Chen et al., Coencapsulation of (–)-Epigallocatechin-3-gallate and quercetin in particle-stabilized W/O/W emulsion gels: controlled release and bioaccessibility. J. Agric. Food Chem. 66(14), 3691–3699 (2018)

    Article  CAS  PubMed  Google Scholar 

  132. K. Hou et al., Nanoemulsion of cinnamon essential oil co-emulsified with hydroxypropyl-β-cyclodextrin and Tween-80: antibacterial activity, stability and slow release performance. Food Biosci. 43, 101232 (2021)

    Article  CAS  Google Scholar 

  133. P. Kour et al., Effect of nanoemulsion-loaded hybrid biopolymeric hydrogel beads on the release kinetics, antioxidant potential and antibacterial activity of encapsulated curcumin. Food Chem. 376, 131925 (2022)

    Article  CAS  Google Scholar 

  134. J. Li et al., Okra polysaccharides/gelatin complex coacervate as pH-responsive and intestine-targeting delivery protects isoquercitin bioactivity. Int. J. Biol. Macromol 159, 487–496 (2020)

    Article  CAS  PubMed  Google Scholar 

  135. M. Shi et al., Co-loading and intestine-specific delivery of multiple antioxidants in pH-responsive microspheres based on TEMPO-oxidized polysaccharides. Carbohydr. Polym. 157, 858–865 (2017)

    Article  CAS  PubMed  Google Scholar 

  136. H. Zheng et al., An improved pH-responsive carrier based on EDTA-Ca-alginate for oral delivery of Lactobacillus rhamnosus ATCC 53103. Carbohydr. Polym. 155, 329–335 (2017)

    Article  CAS  PubMed  Google Scholar 

  137. N. Chen et al., pH and ionic strength responsive core-shell protein microgels fabricated via simple coacervation of soy globulins. Food Hydrocoll. 105, 105853 (2020)

    Article  Google Scholar 

  138. Z. Wei, Q. Huang, Developing organogel-based Pickering emulsions with improved freeze-thaw stability and hesperidin bioaccessibility. Food Hydrocoll. 93, 68–77 (2019)

    Article  CAS  Google Scholar 

  139. H. Rezaeinia et al., Electrohydrodynamic atomization of Balangu (Lallemantia royleana) seed gum for the fast-release of Mentha longifolia L. essential oil: characterization of nano-capsules and modeling the kinetics of release. Food Hydrocoll. 93, 374–385 (2019)

    Article  CAS  Google Scholar 

  140. N.S. de Farias et al., Alginate based antioxidant films with yerba mate (Ilex paraguariensis St. Hil.): characterization and kinetics of phenolic compounds release. Food Packag. Shelf Life 28, 100548 (2021)

    Article  CAS  Google Scholar 

  141. E. Talón et al., Release of polyphenols from starch-chitosan based films containing thyme extract. Carbohydr. Polym. 175, 122–130 (2017)

    Article  PubMed  Google Scholar 

  142. Z. Qiao et al., Completely degradable backbone-type hydrogen peroxide responsive curcumin copolymer: synthesis and synergistic anticancer investigation. Polym. Chem. 10(31), 4305–4313 (2019)

    Article  CAS  Google Scholar 

  143. P. Sabourian et al., Facile design of autogenous stimuli-responsive chitosan/hyaluronic acid nanoparticles for efficient small molecules to protein delivery. J. Mater. Chem. B 8(32), 7275–7287 (2020)

    Article  CAS  PubMed  Google Scholar 

  144. A. Bernardos et al., Secreted enzyme-responsive system for controlled antifungal agent release. Nanomaterials 11(5), 1280 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. B.A. Kumar, R.R. Nayak, Supramolecular phenoxy-alkyl maleate-based hydrogels and their enzyme/pH-responsive curcumin release. New J. Chem. 43(14), 5559–5567 (2019)

    Article  CAS  Google Scholar 

  146. J. de Abreu Figueiredo et al., Encapsulation of camu-camu extracts using prebiotic biopolymers: controlled release of bioactive compounds and effect on their physicochemical and thermal properties. Food Res. Int. 137, 109563 (2020)

    Article  PubMed  Google Scholar 

  147. B. Zhou et al., Release properties of tannic acid from hydrogen bond driven antioxidative cellulose nanofibrous films. Int. J. Biol. Macromol. 91, 68–74 (2016)

    Article  CAS  PubMed  Google Scholar 

  148. R. Chauhan et al., Radiation-induced curcumin release from curcumin–chitosan polymer films. RSC Adv. 10(27), 16110–16117 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. F. Baghbani et al., Novel ultrasound-responsive chitosan/perfluorohexane nanodroplets for image-guided smart delivery of an anticancer agent: curcumin. Mater. Sci. Eng. C 74, 186–193 (2017)

    Article  CAS  Google Scholar 

  150. F. Bani et al., Graphene–polyglycerol–curcumin hybrid as a near-infrared (NIR) laser stimuli-responsive system for chemo-photothermal cancer therapy. RSC Adv. 6(66), 61141–61149 (2016)

    Article  CAS  Google Scholar 

  151. M.K. Nguyen, E. Alsberg, Bioactive factor delivery strategies from engineered polymer hydrogels for therapeutic medicine. Prog. Polym. Sci. 39(7), 1235–1265 (2014)

    Article  CAS  Google Scholar 

  152. A.K. Ghosh, P. Bandyopadhyay, Polysaccharide-protein interactions and their relevance in food colloids. Complex World Polysacch. 14, 395–406 (2012)

    Google Scholar 

  153. M.R.I. Shishir et al., Advances in smart delivery of food bioactive compounds using stimuli-responsive carriers: responsive mechanism, contemporary challenges, and prospects. Compr. Rev. Food Sci. Food Saf. 20(6), 5449–5488 (2021)

    Article  CAS  PubMed  Google Scholar 

  154. T.M.S.U. Gunathilake et al., pH-responsive poly (lactic acid)/sodium carboxymethyl cellulose film for enhanced delivery of curcumin in vitro. J. Drug Deliv. Sci. Technol. 58, 101787 (2020)

    Article  CAS  Google Scholar 

  155. F. Niu et al., Preparation of ultra-long stable ovalbumin/sodium carboxymethylcellulose nanoparticle and loading properties of curcumin. Carbohydr. Polym. 271, 118451 (2021)

    Article  CAS  PubMed  Google Scholar 

  156. A. Taheri, S.M. Jafari, Gum-based nanocarriers for the protection and delivery of food bioactive compounds. Adv. Colloid Interface Sci. 269, 277–295 (2019)

    Article  CAS  PubMed  Google Scholar 

  157. S. Shu et al., Hollow and degradable polyelectrolyte nanocapsules for protein drug delivery. Acta Biomater. 6(1), 210–217 (2010)

    Article  CAS  PubMed  Google Scholar 

  158. H. Yang et al., Stimuli-responsive polymeric micelles for the delivery of paclitaxel. J. Drug Deliv. Sci. Technol. 56, 101523 (2020)

    Article  CAS  Google Scholar 

  159. D. Zhang et al., Polymeric micelles for pH-responsive lutein delivery. J. Drug Deliv. Sci. Technol. 45, 281–286 (2018)

    Article  CAS  Google Scholar 

  160. Z. Yang et al., pH multistage responsive micellar system with charge-switch and PEG layer detachment for co-delivery of paclitaxel and curcumin to synergistically eliminate breast cancer stem cells. Biomaterials 147, 53–67 (2017)

    Article  CAS  PubMed  Google Scholar 

  161. S.H. Park, H.S. Shin, S.N. Park, A novel pH-responsive hydrogel based on carboxymethyl cellulose/2-hydroxyethyl acrylate for transdermal delivery of naringenin. Carbohydr. Polym. 200, 341–352 (2018)

    Article  CAS  PubMed  Google Scholar 

  162. L. Wang et al., Self-assembled pH-responsive supramolecular hydrogel for hydrophobic drug delivery. RSC Adv. 8(55), 31581–31587 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. W. Xu et al., Encapsulation and release behavior of curcumin based on nanoemulsions-filled alginate hydrogel beads. Int. J. Biol. Macromol. 134, 210–215 (2019)

    Article  CAS  PubMed  Google Scholar 

  164. Z. Aytac et al., Encapsulation of gallic acid/cyclodextrin inclusion complex in electrospun polylactic acid nanofibers: release behavior and antioxidant activity of gallic acid. Mater. Sci. Eng. C 63, 231–239 (2016)

    Article  CAS  Google Scholar 

  165. V. Muriel-Galet et al., Antioxidant and antimicrobial properties of ethylene vinyl alcohol copolymer films based on the release of oregano essential oil and green tea extract components. J. Food Eng. 149, 9–16 (2015)

    Article  CAS  Google Scholar 

  166. A. Tampau, C. González-Martínez, A. Chiralt, Release kinetics and antimicrobial properties of carvacrol encapsulated in electrospun poly-(ε-caprolactone) nanofibres. Application in starch multilayer films. Food Hydrocoll 79, 158–169 (2018)

    Article  CAS  Google Scholar 

  167. A. López-Córdoba et al., Cassava starch films containing rosemary nanoparticles produced by solvent displacement method. Food Hydrocoll. 71, 26–34 (2017)

    Article  Google Scholar 

  168. Y. Yang et al., Enhancing vitamin E bioaccessibility: factors impacting solubilization and hydrolysis of α-tocopherol acetate encapsulated in emulsion-based delivery systems. Food Funct. 6(1), 83–96 (2015)

    Article  CAS  Google Scholar 

  169. E. Akar, A. Altınışık, Y. Seki, Preparation of pH-and ionic-strength responsive biodegradable fumaric acid crosslinked carboxymethyl cellulose. Carbohydr. Polym. 90(4), 1634–1641 (2012)

    Article  CAS  PubMed  Google Scholar 

  170. A. Ghanem, D. Skonberg, Effect of preparation method on the capture and release of biologically active molecules in chitosan gel beads. J. Appl. Polym. Sci. 84(2), 405–413 (2002)

    Article  CAS  Google Scholar 

  171. M. Morey, A. Pandit, Responsive triggering systems for delivery in chronic wound healing. Adv. Drug Deliv. Rev. 129, 169–193 (2018)

    Article  CAS  PubMed  Google Scholar 

  172. Z. Aytac et al., Electrospinning of cyclodextrin/linalool-inclusion complex nanofibers: fast-dissolving nanofibrous web with prolonged release and antibacterial activity. Food Chem. 231, 192–201 (2017)

    Article  CAS  PubMed  Google Scholar 

  173. M. Babaei et al., Thermosensitive composite hydrogel incorporated with curcumin-loaded nanopolymersomes for prolonged and localized treatment of glioma. J. Drug Deliv. Sci. Technol. 59, 101885 (2020)

    Article  CAS  Google Scholar 

  174. L.M. Marvdashti, M. Yavarmanesh, A. Koocheki, In vitro release study of nisin from active polyvinyl alcohol-Alyssum homolocarpum seed gum films at different temperatures. Polym. Test. 79, 106032 (2019)

    Article  Google Scholar 

  175. A.K. Anal, Stimuli-induced pulsatile or triggered release delivery systems for bioactive compounds. Recent Pat. Endocr. Metab. Immune Drug Discov. 1(1), 83–90 (2007)

    Article  CAS  Google Scholar 

  176. M.L. Viger et al., Near-infrared-induced heating of confined water in polymeric particles for efficient payload release. ACS Nano 8(5), 4815–4826 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. I. Castangia et al., Therapeutic efficacy of quercetin enzyme-responsive nanovesicles for the treatment of experimental colitis in rats. Acta Biomater. 13, 216–227 (2015)

    Article  CAS  PubMed  Google Scholar 

  178. T. Min et al., Novel antimicrobial packaging film based on porous poly (lactic acid) nanofiber and polymeric coating for humidity-controlled release of thyme essential oil. Lwt 135, 110034 (2021)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afshin Faridi Esfanjani.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabaghi, M., Tavasoli, S., Taheri, A. et al. Controlling release patterns of the bioactive compound by structural and environmental conditions: a review. Food Measure 17, 2261–2284 (2023). https://doi.org/10.1007/s11694-022-01786-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01786-4

Keywords

Navigation