Skip to main content
Log in

Microencapsulation by Complex Coacervation Using Whey Protein Isolates and Gum Acacia: An Approach to Preserve the Functionality and Controlled Release of β-Carotene

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

β-Carotene is a red–orange pigment, a known source of vitamin A and has exceptional antioxidant and free radical scavenging potential. However, uses of β-carotene in food industry are inadequate mostly because of their poor water solubility and low stability. Using the complex coacervation technique, the work is meant to fabricate the microcapsules of β-carotene, to examine the physicochemical properties of microcapsules and finally to evaluate the extent of stability improvement. The configuration of electrostatic complexes between whey protein isolate (WPI) and gum acacia (Acacia arabica, GA) was optimized as a function of pH, ionic strength, WPI/GA ratio, core material load and size of final micromolecules. The optimum process conditions were balanced by the ratio of wall materials WPI/GA 2.0/1.0 % and pH value 4.2. Morphological observations showed that microcapsules presented spherical shape, and smooth and continuous surface. The effective amount of encapsulated core was greater than 70 % for all formulations evaluated. In vitro release data indicated an initial burst release followed by sustained release behavior. The microstructure and viscoelastic properties of WPI and GA complex were studied using dynamic rheometer. The encapsulation method and the wall materials used in this work gave effective protection during storage and eventually resulted sustained release of bioactive while used in food matrix, at suitable conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Angelico, R., Carboni, M., Lampis, S., Schmidt, J., Talmon, Y., Monduzzi, M., & Murgia, S. (2013). Physicochemical and rheological properties of a novel monoolein-based vesicle gel. Soft Matter, 9(3), 921–928.

    Article  CAS  Google Scholar 

  • Borgogna, M., Bellich, B., Zorzin, L., Lapasin, R., & Cesàro, A. (2010). Food microencapsulation of bioactive compounds: rheological and thermal characterisation of non-conventional gelling system. Food Chemistry, 122(2), 416–423.

    Article  CAS  Google Scholar 

  • Butstraen, C., & Salaün, F. (2014). Preparation of microcapsules by complex coacervation of gum Arabic and chitosan. Carbohydrate Polymers, 99, 608–616.

    Article  CAS  Google Scholar 

  • Chenlo, F., Moreira, R., & Silva, C. (2011). Steady-shear flow of semidilute guar gum solutions with sucrose, glucose and sodium chloride at different temperatures. Journal of Food Engineering, 107(2), 234–240.

    Article  CAS  Google Scholar 

  • Date, A. A., Nagarsenker, M. S., Patere, S., Dhawan, V., Gude, R. P., Hassan, P. A., et al. (2011). Lecithin-based novel cationic nanocarriers (Leciplex) II: improving therapeutic efficacy of quercetin on oral administration. Molecular Pharmaceutics, 8(3), 716–726.

    Article  CAS  Google Scholar 

  • Desai, K. G. H., & Park, H. J. (2007). Recent developments in microencapsulation of food ingredients. Drying Technology, 23(7), 37–41.

    Google Scholar 

  • Franceschi, E., Cezaro, A. D., Ferreira, S. R. S., Kunita, M. H., Edvani, C., Rubira, A. F., & Oliveira, J. V. (2010). Co-precipitation of beta-carotene and Bio-polymer using supercritical carbon dioxide as antisolvent. The Open Chemical Engineering Journal, 4, 11–20.

    Article  CAS  Google Scholar 

  • Han, J., Guenier, A.-S., Salmieri, S., & Lacroix, M. (2008). Alginate and chitosan functionalization for micronutrient encapsulation. Journal of Agricultural and Food Chemistry, 56(7), 2528–2535.

    Article  CAS  Google Scholar 

  • Herrero, E., Valle, E., & Galan, M. (2006). Development of a new technology for the production of microcapsules based in automization processes. Chemical Engineering Journal, 117(2), 137–342.

    Article  CAS  Google Scholar 

  • Hsieh, W.-C., Chang, C.-P., & Gao, Y. L. (2006). Controlled release properties of chitosan encapsulated volatile citronella Oil microcapsules by thermal treatments. Colloids and Surfaces B: Biointerfaces, 53(2), 209–214.

    Article  CAS  Google Scholar 

  • Islam, A. M., Phillips, G. O., Sljivo, A., Snowden, M. J., & Williams, P. A. (1997). A review of recent developments on the regulatory, structural and functional aspects of gum arabic. Food Hydrocolloids, 11(4), 493–505.

    Article  CAS  Google Scholar 

  • Jain, A., Agarwal, A., Majumder, S., Lariya, N., Khaya, A., Agrawal, H., & Agrawal, G. P. (2010). Mannosylated solid lipid nanoparticles as vectors for site-specific delivery of an anti-cancer drug. Journal of Controlled Release, 148(3), 359–367.

    Article  CAS  Google Scholar 

  • Jain, K., Kesharwani, P., Gupta, U., & Jain, N. K. (2012). A review of glycosylated carriers for drug delivery. Biomaterials, 33, 4166–4186.

    Article  CAS  Google Scholar 

  • Jain, S., Jain, A. K., Pohekar, M., & Thanki, K. (2013). Novel self-emulsifying formulation of quercetin for improved in vivo antioxidant potential: implications for drug-induced cardiotoxicity and nephrotoxicity. Free Radical Biology & Medicine, 65, 117–130.

    Article  CAS  Google Scholar 

  • Jayme, M., Dunstan, D., & Gee, M. (1999). Zeta potentials of gum arabic stabilised oil in water emulsions. Food Hydrocolloids, 13(6), 459–465.

    Article  CAS  Google Scholar 

  • Jordan, S. L., Russo, M. R., Blessing, R. L., & Theis, A. B. (1996). Inactivation of glutaraldehyde by reaction with sodium bisulfite. Journal of Toxicology and Environmental Health, 47(3), 299–309.

    Article  CAS  Google Scholar 

  • Jovanovi, S., Bara, M., & Ma, O. (2005). Whey proteins-properties and possibility of application. Mljekarstvo, 55(3), 215–233.

    Google Scholar 

  • Jun-xia, X., Hai-yan, Y., & Jian, Y. (2011). Microencapsulation of sweet orange oil by complex coacervation with soybean protein isolate/gum Arabic. Food Chemistry, 125(4), 1267–1272.

    Article  Google Scholar 

  • Laos, K., Lõugas, T., Mändmets, A., & Vokk, R. (2007). Encapsulation of β-carotene from sea buckthorn (Hippophaë rhamnoides L.) juice in furcellaran beads. Innovative Food Science & Emerging Technologies, 8(3), 395–398.

    Article  CAS  Google Scholar 

  • Loksuwan, J. (2007). Characteristics of microencapsulated β-carotene formed by spray drying with modified tapioca starch, native tapioca starch and maltodextrin. Food Hydrocolloids, 21(5–6), 928–935.

    Article  CAS  Google Scholar 

  • Ma, Z.-H., Yu, D.-G., Branford-White, C. J., Nie, H.-L., Fan, Z.-X., & Zhu, L.-M. (2009). Microencapsulation of tamoxifen: application to cotton fabric. Colloids and Surfaces B: Biointerfaces, 69(1), 85–90.

    Article  CAS  Google Scholar 

  • Madene, A., Jacquot, M., Scher, J., & Desobry, S. (2006). Flavour encapsulation and controlled release - a review. International Journal of Food Science and Technology, 41(1), 1–21.

    Article  CAS  Google Scholar 

  • Muhamad, I. I., Fen, L. S., Hui, N. H., & Mustapha, N. A. (2011). Genipin-cross-linked kappa-carrageenan/carboxymethyl cellulose beads and effects on beta-carotene release. Carbohydrate Polymers, 83(3), 1207–1212.

    Article  CAS  Google Scholar 

  • Mukai-Corrêa, R., Prata, A. S., & GROSSO, C. R. F. (2003). Microcapsules obtained by ionic polymerization. In Release of casein encapsulated in alginate and pectin. World Aquaculture, 2.

  • Nickerson, M. T., Patel, J., Heyd, D. V., Rousseau, D., & Paulson, A. T. (2006). Kinetic and mechanistic considerations in the gelation of genipin-crosslinked gelatin. International Journal of Biological Macromolecules, 39(4–5), 298–302.

    Article  CAS  Google Scholar 

  • Peña, B., Panisello, C., Aresté, G., Garcia-Valls, R., & Gumí, T. (2012). Preparation and characterization of polysulfone microcapsules for perfume release. Chemical Engineering Journal, 179, 394–403.

    Article  Google Scholar 

  • Polavarapu, S., Oliver, C. M., Ajlouni, S., & Augustin, M. A. (2011). Physicochemical characterisation and oxidative stability of fish oil and fish oil–extra virgin olive oil microencapsulated by sugar beet pectin. Food Chemistry, 127(4), 1694–1705.

    Article  CAS  Google Scholar 

  • Reineccius, G. A. (1989). Flavor encapsulation. Food Reviews International, 5(2), 147–176.

    Article  CAS  Google Scholar 

  • Schmitt, C. (2000). Effect of protein aggregates on the complex coacervation between β-lactoglobulin and acacia gum at pH 4.2. Food Hydrocolloids, 14(3), 403–413.

    Article  CAS  Google Scholar 

  • Schmitt, C., Sanchez, C., Thomas, F., & Hardy, J. (1999). Complex coacervation between β-lactoglobulin and acacia gum in aqueous medium. Food Hydrocolloids, 13(6), 483–496.

    Article  CAS  Google Scholar 

  • Turgeon, S. L., Schmitt, C., & Sanchez, C. (2007). Protein-polysaccharide complexes and coacervates. Current Opinion in Colloid and Interface Science, 12(4–5), 166–178.

    Article  CAS  Google Scholar 

  • Wang, J., Wang, B. M., & Schwendeman, S. P. (2002). Characterization of the initial burst release of a model peptide from poly(D, L-lactide-co-glycolide) microspheres. Journal of Controlled Release, 82(2–3), 289–307.

    Article  CAS  Google Scholar 

  • Wang, X., Lee, J., Wang, Y.-W., & Huang, Q. (2007). Composition and rheological properties of beta-Lactoglobulin/pectin coacervates: effects of salt concentration and initial protein/polysaccharide ratio. Biomacromolecules, 8(3), 992–997.

    Article  CAS  Google Scholar 

  • Weinbreck, F., de Vries, R., Schrooyen, P., & de Kruif, C. G. (2003). Complex coacervation of whey proteins and gum arabic. Biomacromolecules, 4(2), 293–303.

    Article  CAS  Google Scholar 

  • Weinbreck, F., Nieuwenhuijse, H., Robijn, G. W., & De Kruif, C. G. (2004). Complexation of whey proteins with carrageenan. Journal of Agricultural and Food Chemistry, 52(11), 3550–3555.

    Article  CAS  Google Scholar 

  • Yang, Z., Peng, Z., Li, J., Li, S., Kong, L., Li, P., & Wang, Q. (2014). Development and evaluation of novel flavour microcapsules containing vanilla oil using complex coacervation approach. Food Chemistry, 145, 272–277.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support received from ICAR, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gargi Ghoshal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, A., Thakur, D., Ghoshal, G. et al. Microencapsulation by Complex Coacervation Using Whey Protein Isolates and Gum Acacia: An Approach to Preserve the Functionality and Controlled Release of β-Carotene. Food Bioprocess Technol 8, 1635–1644 (2015). https://doi.org/10.1007/s11947-015-1521-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-015-1521-0

Keywords

Navigation