Skip to main content
Log in

Stimuli-Responsive Polysaccharide Hydrogels for Biomedical Applications: a Review

  • Review
  • Published:
Regenerative Engineering and Translational Medicine Aims and scope Submit manuscript

Abstract

This review aims to present methods for obtaining polysaccharide hydrogels, their properties and sensitivity to environmental stimuli, as well as their potential applications in biomedicine. Living systems respond to external stimuli by adapting themselves to changing conditions. Hydrogels are a class of materials with 3D networks of polymers that can absorb high amounts of water or biological fluids while remaining insoluble under physiological conditions compared with general absorbent materials, with their characteristic being dependent on network structure and the external environment. Stimuli-responsive hydrogels have the ability to respond to changes in their external environment. They can exhibit dramatic changes in their swelling behavior, network structure, permeability, and mechanical strength in response to variations in temperature, pH, glucose, electric field, light, etc. However, such changes are reversible; therefore, hydrogels can convert to their initial state as soon as the trigger is removed. Because of compatibility with living tissues, hydrogels can be used in different biomedical purposes.

Lay Summary

The application of stimuli-responsive polysaccharide hydrogels in the biomedical field has become increasingly popular with many research groups and industries. In addition to their ability to undergo large reversible transitions in their swelling behavior due to small physiological or environmental changes, they are also often highly biocompatible and versatile and possess a high storage capacity for the immobilization of biomolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Rasoulzadeh M, Namazi H. Carboxymethyl cellulose/graphene oxide bionanocomposite hydrogel beads as anticancer drug carrier agent. Carbohydr Polym. 2017;168:320–6.

    CAS  Google Scholar 

  2. Yadollahi M, Gholamali I, Namazi H, Aghazadeh M. Synthesis and characterization of antibacterial carboxymethylcellulose/CuO bio-nanocomposite hydrogels. Int J Biol Macromol. 2015;73:109–14.

    CAS  Google Scholar 

  3. Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev. 2012;64:18–23.

    Google Scholar 

  4. Wichterle O, Lim D. Hydrophilic gels for biological use. Nature. 1960;185:117–8.

    Google Scholar 

  5. Gholamali I, Hosseini SN, Alipour E, Yadollahi M. Preparation and characterization of oxidized starch/CuO nanocomposite hydrogels applicable in a drug delivery system. Starch/Stärke. 2019;71(3-4).

  6. Peppas NA, Bures P, Leobandung W, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm. 2000;50:27–46.

    CAS  Google Scholar 

  7. Ullah F, Othman MBH, Javed F, Ahmad Z, Akil HM. Classification, processing and application of hydrogels: a review. Mater Sci Eng C. 2015;57:414–33.

    CAS  Google Scholar 

  8. Ganji F, Vasheghani-Farahani S, Vasheghani-Farahani E. Theoretical description of hydrogel swelling: a review. Iran Polym J. 2010;19(5):375–98.

    CAS  Google Scholar 

  9. Das N. Preparation methods and properties of hydrogel: a review. J Pharm Pharm Sci. 2013;5(3):112–7.

    CAS  Google Scholar 

  10. Malmsten M. Antimicrobial and antiviral hydrogels. Soft Matter. 2011;7:8725–36.

    CAS  Google Scholar 

  11. Van Vlierberghe S, Dubruel P, Schacht E. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules. 2011;12:1387–408.

    Google Scholar 

  12. Richter A, Paschew G, Klatt S, Lienig J, Arndt KF, Adler HJP. Review on hydrogel-based pH sensors and microsensors. Sensors. 2008;8:561–81.

    CAS  Google Scholar 

  13. Paulino AT, Belfiore LA, Kubota LT, Muniz EC, Tambourgi EB. Efficiency of hydrogels based on natural polysaccharides in the removal of Cd2+ ions from aqueous solutions. Chem Eng J. 2011;168:68–76.

    CAS  Google Scholar 

  14. Bakravi A, Ahamadian Y, Hashemi H, Namazi H. Synthesis of gelatin-based biodegradable hydrogel nanocomposite and their application as drug delivery agent. Adv Polym Technol. 2018;37:2625–35.

    CAS  Google Scholar 

  15. Venkatesan J, Lowe B, Pallela R, Kim SK. Chitosan-based polysaccharide biomaterials. Polysaccharides. 2015:1837–50.

  16. Basu A, Kunduru KR, Abtew E, Domb AJ. Polysaccharide-based conjugates for biomedical applications. Bioconjug Chem. 2015;26(8):1396–412.

    CAS  Google Scholar 

  17. Kabiri R, Namazi H. Synthesis of cellulose/reduced graphene oxide/polyaniline nanocomposite and its properties. Int J Polym Mater Polym Biomater. 2016;65:675–82.

    CAS  Google Scholar 

  18. Ul-Islam M, Khattak WA, Ullah MW, Khan S, Park JK. Synthesis of regenerated bacterial cellulose-zinc oxide nanocomposite films for biomedical applications. Cellulose. 2014;21:433–47.

    CAS  Google Scholar 

  19. Khan S, Ul-Islam M, Khattak WA, Ullah MW, Park JK. Bacterial cellulose-titanium dioxide nanocomposites: nanostructural characteristics, antibacterial mechanism, and biocompatibility. Cellulose. 2015;22:565–79.

    CAS  Google Scholar 

  20. Kamel S, Ali N, Jahangir K, Shah SM, El-Gendy AA. Pharmaceutical significance of cellulose: a review. Express Polym Lett. 2008;2(11):758–78.

    CAS  Google Scholar 

  21. Klemm D, Heublein B, Fink HP. Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem. 2005;44(22):3358–93.

    CAS  Google Scholar 

  22. Suhas, Gupta VK, Carrott PJM, Singh R, Chaudhary M, Kushwaha S. Cellulose: a review as natural, modified and activated carbon adsorbent. Bioresour Technol. 2016;126:1066–76.

    Google Scholar 

  23. Yadollahi M, Namazi H. Synthesis and characterization of carboxymethyl cellulose/layered double hydroxide nanocomposites. J Nanopart Res. 2013;15:1563–72.

    Google Scholar 

  24. Rakhshaei R, Namazi H. A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel. Mater Sci Eng C. 2017;73:456–64.

    CAS  Google Scholar 

  25. Zare-Akbari Z, Farhadnejad H, Furughi-Nia B, Abedin S, Yadollahi M, Khorsand GM. pH-sensitive bionanocomposite hydrogel beads based on carboxymethyl cellulose/ZnO nanoparticle as drug carrier. Int J Biol Macromol. 2016;93:1317–27.

    CAS  Google Scholar 

  26. Yadollahi M, Namazi H, Aghazadeh M. Antibacterial carboxymethyl cellulose/Ag nanocomposite hydrogels cross-linked with layered double hydroxides. Int J Biol Macromol. 2015;79:269–77.

    CAS  Google Scholar 

  27. Basta AH, El-Saied H. New approach for utilization of cellulose derivatives metal complexes in preparation of durable and permanent colored papers. Carbohydr Polym. 2008;74(2):301–8.

    CAS  Google Scholar 

  28. Shen J, Song Z, Qian X, Yang F. Carboxymethyl cellulose/alum modified precipitated calcium carbonate fillers: preparation and their use in papermaking. Carbohydr Polym. 2010;81(3):545–53.

    CAS  Google Scholar 

  29. Choi Y, Simonsen J. Cellulose nanocrystal filled carboxymethyl cellulose nanocomposites. J Nanosci Nanotechnol. 2006;6(3):633–9.

    CAS  Google Scholar 

  30. Luna-Martinez JF, Hernandez-Uresti DB, Reyes-Melo ME, Guerrero-Salazar CA, Gonzalez-Gonzalez VA, Sepulveda-Guzman S. Synthesis and optical characterization of ZnS-sodium carboxymethyl cellulose nanocomposite films. Carbohydr Polym. 2011;84(1):566–70.

    CAS  Google Scholar 

  31. Foroutan R, Ahmadlouydarab M, Ramavandi B, Mohammadi R. Studying the physicochemical characteristics and metals adsorptive behavior of CMC-g-HAp/Fe3O4 nanobiocomposite. J Environ Chem Eng. 2018;6:6049–58.

    CAS  Google Scholar 

  32. Yadollahi M, Namazi H, Barkhordari S. Preparation and properties of carboxymethyl cellulose/layered doublehydroxide bionanocomposite films. Carbohydr Polym. 2014;108:83–9.

    CAS  Google Scholar 

  33. Yadollahi M, Gholamali I, Namazi H, Aghazadeh M. Synthesis and characterization of antibacterial carboxymethylcellulose/ZnO nanocomposite hydrogels. Int J Biol Macromol. 2015;74:136–41.

    CAS  Google Scholar 

  34. Hebeish A, Hashem M, Abd El-Hady MM, Sharaf S. Development of CMC hydrogels loaded with silver nano-particles for medical applications. Carbohydr Polym. 2013;92:407–13.

    CAS  Google Scholar 

  35. Ward MA, Georgiou TK. Thermoresponsive polymers for biomedical applications. Polym. 2011;3(3):1215–42.

    CAS  Google Scholar 

  36. Jyoti BVS, Baek SW. Formulation and comparative study of rheological properties of loaded and unloaded ethanol-based gel propellants. J Energ Mater. 2015;33:125–39.

    CAS  Google Scholar 

  37. McAllister JW, Lott JR, Schmidt PW, Sammler RL, Bates FS, Lodge TP. Linear and nonlinear rheological behavior of fibrillar methylcellulose hydrogels. ACS Macro Lett. 2015;4:538–42.

    CAS  Google Scholar 

  38. Picheth GF, Pirich CL, Sierakowski MR, Woehl MA, Sakakibara CN, De Souza CF, et al. Bacterial cellulose in biomedical applications: a review. Int J Biol Macromol. 2017;104:97–106.

    CAS  Google Scholar 

  39. De Oliveira SA, Da Silva BC, Riegel-Vidotti IC, Urbano A, De Sousa Faria-Tischer PC, Tischer CA. Production and characterization of bacterial cellulose membranes with hyaluronic acid from chicken comb. Int J Biol Macromol. 2017;97:642–53.

    Google Scholar 

  40. Hayashi N, Kondo T, Ishihara M. Enzymatically produced nano-ordered short elements containing cellulose I-beta crystalline domains. Carbohydr Polym. 2005;61(2):191–7.

    CAS  Google Scholar 

  41. Abe K, Iwamoto S, Yano H. Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules. 2007;8(10):3276–8.

    CAS  Google Scholar 

  42. Paakko M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M, et al. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules. 2007;8(6):1934–41.

    CAS  Google Scholar 

  43. Nakagaito AN, Yano H. The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl Phys A Mater. 2004;78(4):547–52.

    CAS  Google Scholar 

  44. Jasim A, Ullah MW, Shi Z, Lin X, Yang G. Fabrication of bacterial cellulose/polyaniline/single-walled carbon nanotubes membrane for potential application as biosensor. Carbohydr Polym. 2017;164:214–21.

    Google Scholar 

  45. Andrade FK, Alexandre N, Amorim I, Gartner F, Mauricio AC, Luis AL. Studies on the biocompatibility of bacterial cellulose. J Bioact Compat Polym. 2013;28:97–112.

    CAS  Google Scholar 

  46. Avila HM, Feldmann EM, Pleumeekers MM, Nimeskern L, Kuo W, De Jong WC, et al. Novel bilayer bacterial nanocellulose scaffold supports neocartilage formation in vitro and in vivo. Biomaterials. 2015;44:122–33.

    Google Scholar 

  47. Rajwade JM, Paknikar KM, Kumbhar JV. Applications of bacterial cellulose and its composites in biomedicine. Appl Microbiol Biotechnol. 2015;99:2491–511.

    CAS  Google Scholar 

  48. Mishra RK, Banthia AK, Majeed ABA. Pectin based formulations for biomedical applications: a review. Asian J Pharm Clin Res. 2012;5:1–7.

    CAS  Google Scholar 

  49. Liu L, Fishman ML, Hicks KB. Pectin in controlled drug delivery: a review. Cellulose. 2007;14:15–24.

    Google Scholar 

  50. Ranjha NM, Mudassir J, Sheikh ZZ. Synthesis and characterization of pH-sensitive pectin/acrylic acid hydrogels for verapamil release study. Iran Polym J. 2011;20:147–59.

    CAS  Google Scholar 

  51. Sudheesh Kumar PT, Lakshmanan VK, Biswas R, Nair SV, Jayakumar R. Synthesis and biological evaluation of chitin hydrogel/Nano ZnO composite bandage as antibacterial wound dressing. J Biomed Nanotechnol. 2012;8:1–10.

    Google Scholar 

  52. Zargar V, Asghari M, Dashti A. A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. Chem Biol Eng Rev. 2015;2:1–24.

    Google Scholar 

  53. Kurita K. Controlled Functionalization of the polysaccharide chitin. Progress Polym Sci. 2001;26:1921–71.

    CAS  Google Scholar 

  54. Tamura H, Nagahama H, Tokura S. Preparation of chitin hydrogel under mild conditions. Cellulose. 2006;13(4):357–64.

    CAS  Google Scholar 

  55. Copello GJ, Mebert AM, Raineri M, Pesenti MP, Diaz LE. Removal of dyes from water using chitosan hydrogel/SiO2 and chitin hydrogel/SiO2 hybrid materials obtained by the sol-gel method. J Hazard Mater. 2011;186:932–9.

    CAS  Google Scholar 

  56. Barikani M, Oliaei E, Seddiqi H, Honarkar H. Preparation and application of chitin and its derivatives: a review. Iran Polym J. 2014;23:307–26.

    CAS  Google Scholar 

  57. Sharp RG. A review of the applications of chitin and its derivatives in agriculture to modify plant-microbial interactions and improve crop yields. Agronomy. 2013;3(4):757–93.

    Google Scholar 

  58. Anitha A, Sowmya S, Sudheesh Kumar PT, Deepthi S, Chennazhi KP, Ehrlich H, et al. Chitin and chitosan in selected biomedical applications. Prog Polym Sci. 2014;39:1644–67.

    CAS  Google Scholar 

  59. Javanbakht S, Namazi H. Doxorubicin loaded carboxymethyl cellulose/graphene quantum dot nanocomposite hydrogel films as a potential anticancer drug delivery system. Mater Sci Eng C. 2018;87(1):50–9.

    CAS  Google Scholar 

  60. Farhoudian S, Yadollahi M, Namazi H. Facile synthesis of antibacterial chitosan/CuO bio-nanocomposite hydrogel beads. Int J Biol Macromol. 2016;82:837–43.

    CAS  Google Scholar 

  61. Rasoulzadehzali M, Namazi H. Facile preparation of antibacterial chitosan/graphene oxide-Ag bio-nanocomposite hydrogel beads for controlled release of doxorubicin. Int J Biol Macromol. 2018;116:54–63.

    CAS  Google Scholar 

  62. Gholamali I, Asnaashariisfahani M, Alipour E. Silver nanoparticles incorporated in pH-sensitive nanocomposite hydrogels based on carboxymethyl chitosan-poly (vinyl alcohol) for use in a drug delivery system. Regen Eng Transl Med. 2019:1–16.

  63. Panchal V, Vyas B, Chauhan CS, Goyal PK, Sarangdevot YS. Chitosan as a natural polymer: an overview. www.pharmaerudition.org. 2015;5(2):1-8.

  64. Wu J, Hou S, Ren D, Mather PT. Antimicrobial properties of nanostructured hydrogel webs containing silver. Biomacromolecules. 2009;10:2686–93.

    CAS  Google Scholar 

  65. Yadollahi M, Farhoudian S, Namazi H. One-pot synthesis of antibacterial chitosan/silver bio-nanocomposite hydrogel beads as drug delivery systems. Int J Biol Macromol. 2015;79:37–43.

    CAS  Google Scholar 

  66. Yadollahi M, Farhoudian S, Barkhordari S, Gholamali I, Farhadnejad H, Motasadizadeh H. Facile synthesis of chitosan/ZnO bio-nanocomposite hydrogel beads as drug delivery systems. Int J Biol Macromol. 2016;82:273–8.

    CAS  Google Scholar 

  67. George M, Abraham TE. pH sensitive alginate-guar gum hydrogel for the controlled delivery of protein drugs. Int J Pharm. 2007;335:123–9.

    CAS  Google Scholar 

  68. Bouropoulos N, Stampolakis A, Mouzakis DE. Dynamic mechanical properties of calcium alginate-hydroxyapatite nanocomposite hydrogels. Sci Adv Mater. 2010;2:239–42.

    CAS  Google Scholar 

  69. Mohamed SF, Mahmoud GA, Abou Taleb MF. Synthesis and characterization of poly (acrylic acid)-g-sodium alginate hydrogel initiated by gamma irradiation for controlled release of chlortetracycline HCl. Monatsh Chem. 2013;144(2):129–37.

    CAS  Google Scholar 

  70. Mørch YA, Donati I, Strand BL, Bræk GS. Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules. 2006;7:1471–80.

    Google Scholar 

  71. Paques JP, van der Linden E, van Rijn CJM, Sagis LMC. Preparation methods of alginate nanoparticles. Adv Colloid Interface. 2014;209:163–71.

    CAS  Google Scholar 

  72. Venkatesan J, Bhatnagar I, Manivasagan P, Kang KH, Kim SK. Alginate composites for bone tissue engineering: a review. Int J Biol Macromol. 2015;72:269–81.

    CAS  Google Scholar 

  73. Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci. 2012;37:106–26.

    CAS  Google Scholar 

  74. Pawar SN, Edgar KJ. Alginate derivatization: a review of chemistry, properties and applications. Biomaterials. 2012;33:3279–305.

    CAS  Google Scholar 

  75. Aljohani WJ, Wenchao L, Ullah MW, Zhang X, Yang G. Application of sodium alginate hydrogel. J Biotechn Biochem. 2017;3(3):19–31.

    Google Scholar 

  76. Collins MN, Birkinshaw C. Hyaluronic acid based scaffolds for tissue engineering—a review. Carbohydr Polym. 2013;92:1262–79.

    CAS  Google Scholar 

  77. Burdick JA, Prestwich GD. Hyaluronic acid hydrogels for biomedical applications. Adv Mater. 2011;23:H41–56.

    CAS  Google Scholar 

  78. Zohuriaan-Mehr MJ, Kabiri K. Superabsorbent polymer materials: a review. Iran Polym J. 2008;17(6):451–77.

    CAS  Google Scholar 

  79. Del Valle LJ, Díaz A, Puiggalí J. Hydrogels for biomedical applications: cellulose, chitosan, and protein/peptide derivatives. Gels. 2017;3:27–55.

    Google Scholar 

  80. Haraguchi K. Stimuli-responsive nanocomposite gels. Colloid Polym Sci. 2011;289:455–73.

    CAS  Google Scholar 

  81. Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev. 2012;64:49–60.

    Google Scholar 

  82. Gupta AK, Siddiqui AW. Environmental responsive hydrogels: a novel approach in drug delivery system. J Drug Deliv Ther. 2012;2(1):81–8.

    CAS  Google Scholar 

  83. Kashyap N, Kumar N, Kumar MR. Hydrogels for pharmaceutical and biomedical applications. Crit Rev Ther Drug. 2005;22:107–50.

    CAS  Google Scholar 

  84. Qureshi D, Nayak SK, Maji S, Anis A, Kim D, Pal K. Environment sensitive hydrogels for drug delivery applications. Eur Polym J. 2019.

  85. Pa’e N, Salehudin MH, Diana Hassan N, Mohd Marsin A, Idayu Muhamad I. Thermal behavior of bacterial cellulose based hydrogels with other composites and related instrumental analysis. Cellulose-Based Superabsorbent Hydrogels PP. 2018; pp. 1-25.

  86. Wei W, Hu X, Qi X, Yu H, Liu Y, Li J, et al. A novel thermo-responsive hydrogel based on salecan and poly (N-isopropylacrylamide): synthesis and characterization. Colloid Surface B. 2015;125:1–11.

    CAS  Google Scholar 

  87. Tan H, Ramirez CM, Miljkovic N, Li H, Rubin JP, Marra KG. Thermosensitive injectable hyaluronic acid hydrogel for adipose tissue engineering. Biomaterials. 2009;30:6844–53.

    CAS  Google Scholar 

  88. Ha DI, Lee SB, Chong MS, Lee YM, Kim SY, Park YH. Preparation of thermoresponsive and injectable hydrogels based on hyaluronic acid and poly-(N-isopropylacrylamide) and their drug release behaviors. Macromol Res. 2006;14:87–93.

    CAS  Google Scholar 

  89. Ganji F, Abdekhodaie MJ. Chitosan-g-PLGA copolymer as a thermosensitive membrane. Carbohydr Polym. 2010;80:740–6.

    CAS  Google Scholar 

  90. Taylor MJ, Tomlins P, Sahota TS. Thermoresponsive gels. Gels. 2017;3:1–31.

    Google Scholar 

  91. Bai Y, Zhang Z, Zhang A, Chen L, He C, Zhuang X, et al. Novel thermo- and pH-responsive hydroxypropyl cellulose- and poly (L-glutamic acid)-based microgels for oral insulin controlled release. Carbohydr Polym. 2012;89:1207–14.

    CAS  Google Scholar 

  92. Thirumala S, Gimble JM, Devireddy RV. Methylcellulose based thermally reversible hydrogel system for tissue engineering applications. Cells. 2013;3:460–75.

    Google Scholar 

  93. Cochis A, Grad S, Stoddart MJ, Fare S, Altomare L, Azzimonti B, et al. Bioreactor mechanically guided 3D mesenchymal stem cell chondrogenesis using a biocompatible novel thermo-reversible methylcellulose-based hydrogel. Sci Rep. 2017;7:1–12.

    Google Scholar 

  94. Bawa P, Pillay V, Choonara YE, du Toit LC. Stimuli-responsive polymers and their applications in drug delivery. Biomed Mater. 2009;4:1–15.

    Google Scholar 

  95. Cirillo G, Spataro T, Curcio M, Spizzirri UG, Nicoletta FP, Picci N, et al. Tunable thermo-responsive hydrogels: synthesis, structural analysis and drug release studies. Mater Sci Eng C. 2015;48:499–510.

    CAS  Google Scholar 

  96. Zhang K, Wu XY. Temperature and pH-responsive polymeric composite membranes for controlled delivery of proteins and peptides. Biomaterials. 2004;25:5281–91.

    CAS  Google Scholar 

  97. Yamato M, Utsumi M, Kushida A, Konno C, Kikuchi A, Okano T. Thermo-responsive culture dishes allow the intact harvest of multilayered keratinocyte sheets without dispase by reducing temperature. Tissue Eng. 2004;7:473–80.

    Google Scholar 

  98. Cirillo G, Nicoletta FP, Curcio M, Spizzirri UG, Picci N, Iemma F. Enzyme immobilization on smart polymers: catalysis on demand. React Funct Polym. 2014;83:62–9.

    CAS  Google Scholar 

  99. Dwivedi S, Khatri P, Mehra GR, Kumar V. Hydrogel—a conceptual overview. Int J Pharm Biol Arch. 2011;2(6):1588–97.

    Google Scholar 

  100. Gupta P, Vermani K, Garg S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today. 2002;7:569–79.

    CAS  Google Scholar 

  101. Wang T, Turhan M, Gunasekaran S. Selected properties of pH-sensitive, biodegradable chitosan-poly (vinyl alcohol) hydrogel. Polym Int. 2004;53:911–8.

    CAS  Google Scholar 

  102. Javanbakht S, Nazari N, Rakhshaei R, Namazi H. Cu-crosslinked carboxymethylcellulose/naproxen/graphene quantum dot nanocomposite hydrogel beads for naproxen oral delivery. Carbohydr Polym. 2018;195(1):453–9.

    CAS  Google Scholar 

  103. Zakhireh S, Mahkam M, Yadollahi M, Jafarirad S. Investigation of pH-sensitive galactopyranoside glycol hydrogels as effective vehicles for oral drug delivery. J Polym Res. 2014;21:398–403.

    Google Scholar 

  104. Barkhordari S, Yadollahi M, Namazi H. pH sensitive nanocomposite hydrogel beads based on carboxymethyl cellulose/layered double hydroxide as drug delivery systems. J Polym Res. 2014;21:454–62.

    Google Scholar 

  105. Yang J, Chen J, Pan D, Wan Y, Wang Z. pH-sensitive interpenetrating network hydrogels based on chitosan derivatives and alginate for oral drug delivery. Carbohydr Polym. 2013;92:719–25.

    CAS  Google Scholar 

  106. Liu J, Huang Y, Kumar A, Tan A, Jin S, Mozhi A, et al. pH-sensitive nano-systems for drug delivery in cancer therapy. Biotechnol Adv. 2014;32(4):693–710.

    CAS  Google Scholar 

  107. Dargaville TR, Farrugia BL, Broadbent JA, Pace S, Upton Z, Voelcker NH. Sensors and imaging for wound healing: a review. Biosens Bioelectron. 2013;41:30–42.

    CAS  Google Scholar 

  108. Zhang Y, Liu Z, Swaddiwudhipong S, Miao H, Ding Z, Yang Z. pH-sensitive hydrogel for micro-fluidic valve. J Funct Biomater. 2012;3:464–79.

    Google Scholar 

  109. Li X, Fu M, Wu M, Zhang C, Deng X, Dhinakar A, et al. pH-sensitive peptide hydrogel for glucose-responsive insulin delivery. Acta Biomater. 2017;51:294–303.

    CAS  Google Scholar 

  110. Guiseppi-Elie A, Brahim SI, Narinesingh D. A chemically synthesized artificial pancreas: release of insulin from glucose-responsive hydrogels. Adv Mater. 2002;14:743–6.

    CAS  Google Scholar 

  111. Roy D, Cambre JN, Sumerlin BS. Future perspectives and recent advances in stimuli-responsive materials. Prog Polym Sci. 2010;35:278–301.

    CAS  Google Scholar 

  112. Egawa Y, Seki T, Takahashi S, Anzai J. Electrochemical and optical sugar sensors based on phenylboronic acid and its derivatives. Mater Sci Eng C. 2011;31:1257–64.

    CAS  Google Scholar 

  113. Albin G, Horbett TA, Ratner BD. Glucose sensitive membranes for controlled delivery of insulin: insulin transport studies. J Control Release. 1985;2:153–64.

    CAS  Google Scholar 

  114. Marek SR, Peppas NA. Insulin release dynamics from poly (diethylaminoethyl methacrylate) hydrogel systems. AIChE J. 2013;59:3578–85.

    CAS  Google Scholar 

  115. Wong JH, Ng TB. Isolation and characterization of a glucose/mannose/rhamnose-specific lectin from the knife bean Canavalia gladiate. Arch Biochem Biophys. 2005;439:91–8.

    CAS  Google Scholar 

  116. Ravaine V, Ancla C, Catargi B. Chemically controlled closed-loop insulin delivery. J Control Release. 2008;132:2–11.

    CAS  Google Scholar 

  117. Valuev IL, Vanchugova LV, Valuev LI. Glucose-sensitive hydrogel systems. Polym Sci Ser A. 2011;53(5):385–9.

    CAS  Google Scholar 

  118. Obaidat AA, Park K. Characterization of glucose dependent gel-sol phase transition of the polymeric glucose-concanavalin A hydrogel system. Pharm Res. 1996;13(7):989–95.

    CAS  Google Scholar 

  119. Yin R, Wang K, Han J, Nie J. Photo-crosslinked glucose-sensitive hydrogels based on methacrylate modified dextran-concanavalin A and PEG dimethacrylate. Carbohydr Polym. 2010;82(2):412–8.

    CAS  Google Scholar 

  120. Aslan K, Lakowicz JR, Geddes CD. Tunable plasmonic glucose sensing based on the dissociation of Con A-aggregated dextran-coated gold colloids. Anal Chim Acta. 2004;517:139–44.

    CAS  Google Scholar 

  121. Zhang C, Losego MD, Braun PV. Hydrogel-based glucose sensors: effects of phenylboronic acid chemical structure on response. Chem Mater. 2013;25(15):3239–50.

    CAS  Google Scholar 

  122. Hisamitsu I, Kataoka K, Okano T, Sakurai Y. Glucose-responsive gel from phenylborate polymer and poly (vinyl alcohol): prompt response at physiological pH through the interaction of borate with amino group in the gel. Pharm Res. 1997;14(3):289–93.

    CAS  Google Scholar 

  123. Kim A, Mujumdar SK, Siegel RA. Swelling properties of hydrogels containing phenylboronic acids. Chemosensor. 2014;2:1–12.

    Google Scholar 

  124. Nilsen-Nygaard J, Strand SP, Varum KM, Draget KI, Nordgard CT. Chitosan: gels and interfacial properties. Polym. 2015;7:552–79.

    CAS  Google Scholar 

  125. Zhang H, Wu S, Tao Y, Zhang L, Su Z. Preparation and characterization of water-soluble chitosan nanoparticles as protein delivery system. J Nanomater. 2011;2010:1–6.

    Google Scholar 

  126. Webber MJ, Anderson DG. Smart approaches to glucose-responsive drug delivery. J Drug Target. 2015;23(7-8):651–5.

    CAS  Google Scholar 

  127. Willner I. Stimuli-controlled hydrogels and their applications. Acc Chem Res. 2017;50:657–8.

    CAS  Google Scholar 

  128. Abureesh MA, Oladipo AA, Gazi M. Facile synthesis of glucose-sensitive chitosan-poly (vinyl alcohol) hydrogel: drug release optimization and swelling properties. Int J Biol Macromol. 2016;90:75–80.

    CAS  Google Scholar 

  129. Jeong B, Gutowska A. Lessons from nature: stimuli-responsive polymers and their biomedical applications. Trends Biotechnol. 2002;20:305–11.

    CAS  Google Scholar 

  130. Attaran A, Brummund J, Wallmersperger T. Modeling and simulation of the bending behavior of electrically-stimulated cantilevered hydrogels. Smart Mater Struct. 2015;24(3):1–15.

    Google Scholar 

  131. Shi Z, Gao X, Ullah MW, Li S, Wang Q, Yang G. Electroconductive natural polymer-based hydrogels. Carbohydr Polym. 2017;163:62–9.

    Google Scholar 

  132. Li H, Luo R, Lam KY. Modeling of ionic transport in electric-stimulus-responsive hydrogels. J Membr Sci. 2007;289:284–96.

    CAS  Google Scholar 

  133. Wallmersperger T, Attaran A, Keller K, Brummund J, Guenther M, Gerlach G. Modeling and simulation of hydrogels for the application as bending actuators. Progr Colloid Polym Sci. 2013;140:189–204.

    CAS  Google Scholar 

  134. Yuan Z, Li H. Modeling development and numerical simulation of transient nonlinear behaviors of electric-sensitive hydrogel membrane under an external electric field. J Biochip Tissue Chip. 2013;3:1–13.

    Google Scholar 

  135. Rahimi N, Dera R, Van den Akker NMS, Gagliardi M, Swennen G, Diliën H, Cleij, T, Post MJ, Molin DGM. Electro-responsive hydrogels for biomedical applications. Biomedicasummit.com. 2015.

  136. Bajpai AK, Shukla SK, Bhanu S, Kankane S. Responsive polymers in controlled drug delivery. Prog Polym Sci. 2008;33:1088–118.

    CAS  Google Scholar 

  137. Murdan S. Electro-responsive drug delivery from hydrogels. J Control Release. 2003;92:1–17.

    CAS  Google Scholar 

  138. Liu Y, Yan K, Jiang G, Xiong Y, Du Y, Shi X. Electrical signal guided ibuprofen release from electrodeposited chitosan hydrogel. Int J Polym Sci. 2014;2014:1–8.

    CAS  Google Scholar 

  139. Peng L, Liu Y, Huang J, Li J, Gong J, Ma J. Microfluidic fabrication of highly stretchable and fast electro-responsive graphene oxide/polyacrylamide/alginate hydrogel fibers. Eur Polym J. 2018;103:335–41.

    CAS  Google Scholar 

  140. Liu Y, Servant A, Guy OJ, Al-Jamal KT, Williams PR, Hawkins KM, et al. An electric-field responsive microsystem for controllable miniaturised drug delivery applications. Procedia Eng. 2011;25:984–7.

    CAS  Google Scholar 

  141. Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev. 2008;60(15):1638–49.

    CAS  Google Scholar 

  142. Takahashi SH, Lira LM. Córdoba de Torresi SI. Zero-order release profiles from a multistimuli responsive electro-conductive hydrogel. J Biomater Nanobi. 2012;3:262–8.

    CAS  Google Scholar 

  143. Tiitu M, Hiekkataipale P, Kainen JH, Makela T, Ikkala O. Viscoelastic and electrical transitions in gelation of electrically conducting polyaniline. Macromolecules. 2002;35:5212–7.

    CAS  Google Scholar 

  144. Qin XH, Ovsianikov A, Stampfl J, Liska R. Additive manufacturing of photosensitive hydrogels for tissue engineering applications. BioNanoMat. 2014;15(3-4):49–70.

    Google Scholar 

  145. Katz JS, Burdick JA. Light-responsive biomaterials: development and applications. Macromol Biosci. 2010;10:339–48.

    CAS  Google Scholar 

  146. Ilić-Stojanović S, Nikolić L, Nikolić V, Petrović S, Stanković M, Mladenović-Ranisavljević I. Stimuli-sensitive hydrogels for pharmaceutical and medical applications. Facta universitatis-series: Phys Chem Technol. 2011;9(1):37–56.

    Google Scholar 

  147. Suzuki A, Tanaka T. Phase transition in polymer gels induced by visible light. Nature. 1990;346:345–7.

    CAS  Google Scholar 

  148. Schiphorst J, Coleman S, Stumpel JE, Azouz AB, Diamond D, Schenning APHJ. Molecular design of light-responsive hydrogels, for in situ generation of fast and reversible valves for microfluidic applications. Chem Mater. 2015;27:5925–31.

    Google Scholar 

  149. Meng H, Hu J. A brief review of stimulus active polymers responsive to thermal, light, magnetic, electric and water/solvent stimuli. J Intell Mater Syst Struct. 2010;21:859–85.

    CAS  Google Scholar 

  150. Javvaji V, Baradwaj AG, Payne GF, Raghavan SR. Light-activated ionic gelation of common biopolymers. Langmuir. 2011;27:12591–6.

    CAS  Google Scholar 

  151. Higham AK, Bonino CA, Raghavan SR, Khan SA. Photo-activated ionic gelation of alginate hydrogel: real-time rheological monitoring of the two-step crosslinking mechanism. Soft Matter. 2014;10:4990–5002.

    CAS  Google Scholar 

  152. Lin MC, Tai HY, Ou TC, Don TM. Preparation and characterization of UV-sensitive chitosan for UV-cure with poly (ethylene glycol) dimethacrylate. Cellulose. 2012;19:1689–700.

    CAS  Google Scholar 

  153. Monier M, Abdel-Latif DA, Ji HF. Synthesis and application of photo active carboxymethyl cellulose derivatives. React Funct Polym. 2016;102:137–46.

    CAS  Google Scholar 

  154. Cohen Stuart MA, Huck WTS, Genzer J, Müller M, Ober C, Stamm M, et al. Emerging applications of stimuli-responsive polymer materials nature materials. Nat Mater. 2010;9:101–13.

    CAS  Google Scholar 

  155. Lee KK, Cussler E, Marchetti M, McHugh MA. Pressure-dependent phase transitions in hydrogels. Chem Eng Sci. 1990;45(3):766–7.

    Google Scholar 

  156. Mahkam M. Modification of nano alginate-chitosan matrix for oral delivery of insulin. Nat Sci. 2009;7(8):1–7.

    Google Scholar 

  157. Peppas NA, Khare AR. Preparation, structure and diffusional behavior of hydrogel in controlled release. Adv Drug Deliv Rev. 1993;11:1–35.

    CAS  Google Scholar 

  158. Ferreira NN, Ferreira LMB, Cardoso VMO, Boni FI, Souza ALR, Gremião MPD. Recent advances in smart hydrogels for biomedical applications: from self-assembly to functional approaches. Eur Polym J. 2018;99:117–33.

    CAS  Google Scholar 

  159. Wang W, Kang Y, Wang A. One-step fabrication in aqueous solution of a granular alginate-based hydrogel for fast and efficient removal of heavy metal ions. J Polym Res. 2013;20:101–10.

    Google Scholar 

  160. Fernandez-Ferreiro A, Gonzalez Barcia M, Gil-Martinez M, Vieites-Prado A, Lema I, Argibay B, et al. In vitro and in vivo ocular safety and eye surface permanence determination by direct and magnetic resonance imaging of ion-sensitive hydrogels based on gellan gum and kappa-carrageenan. Eur J Pharm Biopharm. 2015;94:342–51.

    CAS  Google Scholar 

  161. Gambhire S, Bhalerao K, Singh S. In situ hydrogel: different approaches to ocular drug delivery. Int J Pharm Pharm Sci. 2013;5(2):27–36.

    CAS  Google Scholar 

  162. Park TG, Hoffman AS. Sodium chloride-induced phase transition in nonionic poly (N-isopropylacrylamide) gel. Macromolecules. 1993;26:5045–8.

    CAS  Google Scholar 

  163. Gawel K, Barriet D, Sletmoen M, Stokke BT. Responsive hydrogels for label-free signal transduction within biosensors. Sensors. 2010;10:4381–409.

    CAS  Google Scholar 

  164. Berger J, Reist M, Mayer JM, Felt O, Peppas NA, Gurny R. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm. 2004;57:19–34.

    CAS  Google Scholar 

  165. Mao J, Kondu S, Ji HF, McShane MJ. Study of the near-neutral pH-sensitivity of chitosan/gelatin hydrogels by turbidimetry and microcantilever deflection. Biotechnol Bioeng. 2006;95(3):333–41.

    CAS  Google Scholar 

  166. Beaune G, Ménager C. In situ precipitation of magnetic fluid encapsulated in giant liposomes. J Colloid Interface Sci. 2010;343(1):396–9.

    CAS  Google Scholar 

  167. Li Y, Huang G, Zhang X, Li B, Chen Y, Lu T, et al. Magnetic hydrogels and their potential biomedical applications. Adv Funct Mater. 2012;23(6):660–72.

    Google Scholar 

  168. Gil S, Mano JF. Magnetic composite biomaterials for tissue engineering. Biomater Sci. 2014;2:812–8.

    CAS  Google Scholar 

  169. Medeiros SF, Santos AM, Fessi H, Elaissari A. Stimuli-responsive magnetic particles for biomedical applications. Int J Pharm. 2011;403:139–61.

    CAS  Google Scholar 

  170. Davaran S, Alimirzalu S, Nejati-Koshki K, Tayefi Nasrabadi H, Akbarzadeh A, Khandaghi AA, et al. Physicochemical characteristics of Fe3O4 magnetic nanocomposites based on poly (N isopropylacrylamide) for anti-cancer drug delivery. Asian Pac J Cancer P. 2014;15(1):49–54.

    Google Scholar 

  171. Sriplai N, Mongkolthanaruk W, Eichhorn SJ, Pinitsoontorn S. Magnetically responsive and flexible bacterial cellulose membranes. Carbohydr Polym. 2018;192:251–62.

    CAS  Google Scholar 

  172. El-Sherbiny IM, Yacoub MH. Hydrogel scaffolds for tissue engineering: progress and challenges. J Nanomater. 2011;2011:1–13.

    Google Scholar 

  173. Gaharwar AK, Peppas NA, Khademhosseini A. Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng. 2014;111(3):441–53.

    CAS  Google Scholar 

  174. Chatterjee J, Haik Y, Ching JC. Modification and characterization of polystyrene-based magnetic microspheres and comparison with albumin-based magnetic microspheres. J Magn Magn Mater. 2001;225(1-2):21–9.

    CAS  Google Scholar 

  175. Reddi AH, Becerra J, Andrades JA. Nanomaterials and hydrogel scaffolds for articular cartilage regeneration. Tissue Eng B Rev. 2011;17(5):301–5.

    CAS  Google Scholar 

  176. Jun HW, Yuwono V, Paramonov SE, Hartgerink JD. Enzyme-mediated degradation of peptide amphilic nanofiber networks. Adv Mater. 2005;17:2612–7.

    CAS  Google Scholar 

  177. Horsman MR, Overgaard J. Hyperthermia: a potent enhancer of radiotherapy. Clin Oncol. 2007;19(6):418–26.

    CAS  Google Scholar 

  178. Liu TY, Hu SH, Liu DM, Chen SY, Chen IW. Biomedical nanoparticle carriers with combined thermal and magnetic responses. Nano Today. 2009;4:52–65.

    CAS  Google Scholar 

  179. Wu J, Jiang W, Tian R, Shen Y, Jiang W. Facile synthesis of magnetic-/pH-responsive hydrogel beads based on Fe3O4 nanoparticles and chitosan hydrogel as MTX carriers for controlled drug release. J Biomater Sci Polym E. 2016;27(15):1553–68.

    CAS  Google Scholar 

  180. Zhao YZ, Du LN, Lu CT, Jin YG, Ge SP. Potential and problems in ultrasound-responsive drug delivery systems. Int J Nanomedicine. 2013;8:1621–33.

    Google Scholar 

  181. Norris P, Noble M, Francolini I, Vinogradov A, Stewart P, Ratner B, et al. Ultrasonically controlled release of ciprofloxacin from self-assembled coatings on poly (2-Hydroxyethyl methacrylate) hydrogels for Pseudomonas aeruginosa biofilm prevention. Agents Chemother. 2005;49(10):4272–9.

    CAS  Google Scholar 

  182. Uesugi Y, Kawata H, Saito Y, Tabata Y. An ultrasound-responsive nano delivery system of tissue-type plasminogen activator for thrombolytic therapy. J Control Release. 2010;147(2):269–77.

    CAS  Google Scholar 

  183. You JO, Almeda D, Ye JCG, Auguste DT. Bioresponsive matrices in drug delivery. J Biol Eng. 2010;4:15–27.

    CAS  Google Scholar 

  184. Peteu SF, Oancea F, Sicuia OA, Constantinescu F, Dinu S. Responsive polymers for crop protection. Polymers. 2010;2:229–51.

    CAS  Google Scholar 

  185. Zardad AZ, Choonara YE, Claire du Toit L, Kumar P, Mabrouk M, Kondiah PPD, et al. A review of thermo- and ultrasound-responsive polymeric systems for delivery of chemotherapeutic agents. Polym. 2016;8(10):359.

    Google Scholar 

  186. Wu CH, Sun MK, Shieh J, Chen CH, Huang CW, Dai CA, et al. Ultrasound-responsive NIPAM-based hydrogels with tunable profile of controlled release of large molecules. Ultrasonics. 2018;83:157–63.

    CAS  Google Scholar 

  187. Audebrand M, Kolb M, Axelos MAV. Combined rheological and ultrasonic study of alginate and pectin gels near the sol-gel transition. Biomacromolecules. 2006;7:2811–7.

    CAS  Google Scholar 

  188. Jiang H, Kobayashi T. Ultrasound stimulated release of gallic acid from chitin hydrogel matrix. Mater Sci Eng C. 2017;75:478–86.

    CAS  Google Scholar 

  189. Lu ZR, Kopeckova P, Kopecek J. Antigen responsive hydrogels based on polymerizable antibody Fab' fragment. Macromol Biosci. 2003;3(6):296–300.

    CAS  Google Scholar 

  190. Souza SF, Kogikoski S Jr, Silva ER, Alves WA. Nanostructured antigen responsive hydrogels based on peptides for leishmaniasis detection. J Braz Chem Soc. 2017;28(9):1619–29.

    CAS  Google Scholar 

  191. Zhang R, Bowyer A, Eisenthal R, Hubble J. A smart membrane based on an antigen-responsive hydrogel. Biotechnol Bioeng. 2007;97(4):976–84.

    CAS  Google Scholar 

  192. Borges O, Borchard G, Verhoef JC, De Sousa A, Junginger HE. Preparation of coated nanoparticles for a new mucosal vaccine delivery system. Int J Pharm. 2005;299:155–66.

    CAS  Google Scholar 

  193. Li XY, Kong XY, Shi S, Zheng XL, Guo G, Wei YQ, et al. Preparation of alginate coated chitosan microparticles for vaccine delivery. BMC Biotechnol. 2008;8:89.

    Google Scholar 

  194. Thornton PD, McConnel G, Ulijin RV. Enzyme-responsive polymer hydrogel beads. Chem Commun. 2005;47:5913–5.

    Google Scholar 

  195. Jhaveri A, Deshpande P, Torchilin V. Stimuli-sensitive nanopreparations for combination cancer therapy. J Control Release. 2014;190:352–70.

    CAS  Google Scholar 

  196. Lu Y, Sun W, Gu Z. Stimuli-responsive nanomaterials for therapeutic protein delivery. J Control Release. 2014;194:1–19.

    CAS  Google Scholar 

  197. Ulijin RV. Enzyme-responsive materials: a new class of smart biomaterials. J Mater Chem. 2006;16:2217–25.

    Google Scholar 

  198. Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12:991–1003.

    CAS  Google Scholar 

  199. Aimetti AA, Machen AJ, Anseth KS. Poly (ethylene glycol) hydrogels formed by thiol-ene photopolymerization for enzyme-responsive protein delivery. Biomaterials. 2009;30(30):6048–54.

    CAS  Google Scholar 

  200. Lee SC, Kwon IK, Park K. Hydrogels for delivery of bioactive agents: a historical perspective. Adv Drug Deliv Rev. 2013;65:17–20.

    CAS  Google Scholar 

  201. Sadat Ebrahimi MM, Schonherr H. Enzyme-sensing chitosan hydrogels. Langmuir. 2014;30:7842–50.

    CAS  Google Scholar 

  202. Wang C, Esker AR. Nanocrystalline chitin thin films. Carbohydr Polym. 2014;102:151–8.

    CAS  Google Scholar 

  203. Kaur H, Kumar R, Nagendra Babu J, Mittal S. Advances in arsenic biosensor development—a comprehensive review. Biosens Bioelectron. 2015;63:533–45.

    CAS  Google Scholar 

  204. Saha N, Saarai A, Roy N, Kitano T, Saha P. Polymeric biomaterial based hydrogels for biomedical applications. J Biomater Nanobiotechnol. 2011;2:85–90.

    CAS  Google Scholar 

  205. Guo B, Glavas L, Albertsson AC. Biodegradable and electrically conducting polymers for biomedical applications. Prog Polym Sci. 2013;38(9):1263–86.

    CAS  Google Scholar 

  206. Zaman M, Siddique W, Waheed S, Sarfraz RM, Mahmood A, Qureshi J, et al. Hydrogels, their applications and polymers used for hydrogels: a review. IJBPAS. 2015;4(12):6581–603.

    CAS  Google Scholar 

  207. Di Z, Shi Z, Ullah MW, Li S, Yang G. A transparent wound dressing based on bacterial cellulose whisker and poly (2-hydroxyethyl methacrylate). Int J Biol Macromol. 2017;105:638–44.

    CAS  Google Scholar 

  208. Singh B, Sharma S, Dhiman A. Acacia gum polysaccharide based hydrogel wound dressings: synthesis, characterization, drug delivery and biomedical properties. Carbohydr Polym. 2017;165:294–303.

    CAS  Google Scholar 

  209. Chai Q, Jiao Y, Yu X. Hydrogels for biomedical applications: their characteristics and the mechanisms behind them. Gels. 2017;3(1):6.

    Google Scholar 

  210. Barkhordari S, Yadollahi M. Carboxymethyl cellulose capsulated layered double hydroxides/drug nanohybrids for cephalexin oral delivery. Appl Clay Sci. 2016;121-122:77–85.

    CAS  Google Scholar 

  211. Hoare TR, Kohane DS. Hydrogels in drug delivery: progress and challenges. Polymer. 2008;49:1993–2007.

    CAS  Google Scholar 

  212. Masteiková R, Chalupová Z, Šklubalová Z. Stimuli-sensitive hydrogels in controlled and sustained drug delivery. Medicina. 2003;39:19–24.

    Google Scholar 

  213. He C, Kim SW, Lee DS. In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. J Control Release. 2008;127:189–207.

    CAS  Google Scholar 

  214. Kuhn W, Hargitay B, Katchalsky A, Eisenberg H. Reversible dilation and contraction by changing the state of ionization of high-polymer acid networks. Nature. 1950;165:514–6.

    CAS  Google Scholar 

  215. Aranaz I, Mengíbar M, Harris R, Paños I, Miralles B, Acosta N, et al. Functional characterization of chitin and chitosan. Curr Chem Biol. 2009;3:203–30.

    CAS  Google Scholar 

  216. Kumar A, Han SS. PVA-based hydrogels for tissue engineering: a review. Int J Polym Mater Polym Biomater. 2017;66(4):159–82.

    CAS  Google Scholar 

  217. Shi J, Votruba AR, Farokhzad OC, Langer R. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett. 2010;10:3223–30.

    CAS  Google Scholar 

  218. Asadi N, Alizadeh E, Salehi R, Khalandi B, Davaran S, Akbarzadeh A. Nanocomposite hydrogels for cartilage tissue engineering: a review. Artif Cell Nanomed Biotechnol. 2018;46(3):465–71.

    CAS  Google Scholar 

  219. Sun J, Tan H. Alginate-based biomaterials for regenerative medicine applications. Materials. 2013;6:1285–309.

    CAS  Google Scholar 

  220. Gauvin R, Parenteau-Bareil R, Dokmeci MR, Merryman WD, Khademhosseini A. Hydrogels and microtechnologies for engineering the cellular microenvironment. Wires Nanomed Nanobiotechnol. 2012;4:235–46.

    CAS  Google Scholar 

  221. Lu Z, Gao J, He Q, Wu J, Liang D, Yang H, et al. Enhanced antibacterial and wound healing activities of microporous chitosan-Ag/ZnO composite dressing. Carbohydr Polym. 2017;156:460–9.

    CAS  Google Scholar 

  222. Winter GD. Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig. Nature. 1962;193:293–4.

    CAS  Google Scholar 

  223. Qu X, Wirsén A, Albertsson AC. Novel pH-sensitive chitosan hydrogels: swelling behavior and states of water. Polymer. 2000;41(13):4841–7.

    CAS  Google Scholar 

  224. Aguirre CI, Reguera E, Stein A. Tunable colors in opals and inverse opal photonic crystals. Adv Funct Mater. 2010;20:2565–78.

    CAS  Google Scholar 

  225. Xia M, Cheng Y, Meng Z, Jiang X, Chen Z, Theato P, et al. A novel nanocomposite hydrogel with precisely tunable UCST and LCST. Macromol Rapid Commun. 2015;36(5):477–82.

    CAS  Google Scholar 

  226. Hebeish A, Farag S, Sharaf S, Shaheen TI. Thermal responsive hydrogels based on semi interpenetrating network of poly (NIPAm) and cellulose nanowhiskers. Carbohydr Polym. 2014;102:159–66.

    CAS  Google Scholar 

  227. Nucara L, Piazza V, Greco F, Robbiano V, Cappello V, Gemmi M, et al. Ionic strength responsive sulfonated polystyrene opals. ACS Appl Mater Interfaces. 2017;9(5):4818–27.

    CAS  Google Scholar 

  228. Chen JK, Chang CJ. Fabrications and applications of stimulus-responsive polymer films and patter ns on surfaces: a review. Materials. 2014;7:805–75.

    Google Scholar 

  229. Qiu X, Hu S. Smart materials based on cellulose: a review of the preparations, properties, and applications. Materials. 2013;6:738–81.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iman Gholamali.

Ethics declarations

Conflict of Interest

The author declares that he has no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholamali, I. Stimuli-Responsive Polysaccharide Hydrogels for Biomedical Applications: a Review. Regen. Eng. Transl. Med. 7, 91–114 (2021). https://doi.org/10.1007/s40883-019-00134-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40883-019-00134-1

Keywords

Navigation