Skip to main content
Log in

Development of Kesari dal (Lathyrus sativus) protein hydrolysates, with reduced β-ODAP content exhibiting anti-oxidative and anti-diabetic properties

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Kesari dal was pre-treated to ensure a low β-ODAP neurotoxin (≈ 0.08%) content, following which it was subjected to liquid enzymatic hydrolysis (LEH), solid state enzymatic hydrolysis (SSEH) using alcalase, modified SSEH (MSSEH) using cellulase, amylase and alcalase to produce Kesari dal liquid hydrolysate (KDLH), Kesari dal hydrolysed meal (KDHM) and modified Kesari dal hydrolysed meal (MKDHM) respectively. The hydrolysis was carried out at varying E:S ratios and time of reaction as well as moisture content in the case of SSEH and MSSEH, to yield a higher degree of hydrolysis (DH). The experimental variants of liquid hydrolysates and hydrolysed meals generated from pre-treated Kesari dal flour (KDF), were tested for various physicochemical properties and biological activities. KDLH, KDHM and MKDHM displayed improved protein solubility with a maximum solubility of 58%, 43.3% and 43.2% for the highest DH of 40.1%, 28.7%, 30.9% respectively, achieved in each process. The emulsifying properties and foaming properties of the protein hydrolysates showed a decline with increase in DH. FTIR spectra for KDHM and particularly MKDHM revealed an increase in breakage of peptide bonds, however no change in heat stability was observed under TGA analysis. KDLH, KDHM and MKDHM were subjected to in-vitro protein digestion (IVPD) and their antioxidant activity and antidiabetic activity were evaluated before and after IVPD. Hydrolysed products (KDLH, KDHM and MKDHM) displayed increased bioactivities as compared to unhydrolyzed KD (pre-treated KDF and KDLE) and further displayed either an unaltered or improved antioxidant activity as well as antidiabetic activity after IVPD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Girma, B. Tefera, L. Dadi, Grass Pea and Neurolathyrism: Farmers’ perception on its consumption and protective measure in North Shewa, Ethiopia. Food Chem. Toxicol. 49, 668–672 (2011). https://doi.org/10.1016/j.fct.2010.08.040

    Article  CAS  PubMed  Google Scholar 

  2. F.I.F. Lambein, Y. Kuo, K. Kusama-Eguchi, 3-N-oxalyl-L-2,3-diaminopropanoic acid, a multifunctional plant metabolite of toxic reputation. Issue Honor Prof. Berhanu Abegaz Ark. 2007, 45–52 (2007)

    Google Scholar 

  3. G. Akalu, G. Johansson, B.M. Nair, Effect of processing on the content of β-N-oxalyl-α, β-diaminopropionic acid (gb-ODAP) in grass pea (Lathyrus sativus) seeds and flour as determined by flow injection analysis. Food Chem. 62, 233–237 (1998). https://doi.org/10.1016/S0308-8146(97)00137-4

    Article  CAS  Google Scholar 

  4. K.M. Tarade, R.S. Singhal, R.V. Jayram, A.B. Pandit, Kinetics of degradation of ODAP in Lathyrus sativus L. flour during food processing. Food Chem. 104, 643–649 (2007). https://doi.org/10.1016/j.foodchem.2006.12.018

    Article  CAS  Google Scholar 

  5. M.M. Paradkar, R.S. Singhal, P.R. Kulkarni, Detection of Lathyrus sativus in processed chickpea- and red gram-based products by thin layer chromatography. J. Sci. Food Agric. 83, 727–730 (2003). https://doi.org/10.1002/jsfa.1361

    Article  CAS  Google Scholar 

  6. D. Klupšaitė, G. Juodeikienė, Legume: composition, protein extraction and functional properties. A review. Chem. Technol. 66, 5–12 (2015). https://doi.org/10.5755/j01.ct.66.1.12355

    Article  CAS  Google Scholar 

  7. Y. Fang, S. Wang, S. Liu, M. Lu, Y. Jiao, G. Chen, J. Pan, Solid-state fermentation of Acanthogobius hasta processing by-products for the production of antioxidant protein hydrolysates with Aspergillus oryzae. Braz. Arch. Biol. Technol. 58, 343–352 (2015). https://doi.org/10.1590/S1516-8913201500297

    Article  CAS  Google Scholar 

  8. W. Wu, S. Zhao, C. Chen, F. Ge, D. Liu, X. He, Optimization of production conditions for antioxidant peptides from walnut protein meal using solid-state fermentation. Food Sci. Biotechnol. 23, 1941–1949 (2014). https://doi.org/10.1007/s10068-014-0265-3

    Article  CAS  Google Scholar 

  9. O. Santala, Impact of Water Content on Enzymatic Modification of Wheat Bran (Springer, New York, 2014)

    Google Scholar 

  10. W. Horwitz, G.W. Latimer, Official Methods of Analysis of AOAC International (AOAC International, Gaithersburg, 2005)

    Google Scholar 

  11. T.B. Osborne, The Proteins of the Wheat KERNEL, (1907) 119 p. file://catalog.hathitrust.org/Record/001034228.

  12. G. Chabanon, I. Chevalot, X. Framboisier, S. Chenu, I. Marc, Hydrolysis of rapeseed protein isolates: kinetics, characterization and functional properties of hydrolysates. Process Biochem. 42, 1419–1428 (2007). https://doi.org/10.1016/j.procbio.2007.07.009

    Article  CAS  Google Scholar 

  13. N.T. Hoyle, J.H. Merrltt, Quality of Fish Protein Hydrolysates from Herring (Clupea harengus). J. Food Sci. 59, 76–79 (1994). https://doi.org/10.1111/j.1365-2621.1994.tb06901.x

    Article  CAS  Google Scholar 

  14. E.F. Hartree, Determination of protein: A modification of the lowry method that gives a linear photometric response. Anal. Biochem. 48, 422–427 (1972). https://doi.org/10.1016/0003-2697(72)90094-2

    Article  CAS  PubMed  Google Scholar 

  15. S.N. Jamdar, V. Rajalakshmi, M.D. Pednekar, F. Juan, V. Yardi, A. Sharma, Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate. Food Chem. 121, 178–184 (2010). https://doi.org/10.1016/j.foodchem.2009.12.027

    Article  CAS  Google Scholar 

  16. X. Li, J. Deng, S. Shen, T. Li, M. Yuan, R. Yang, C. Ding, Antioxidant activities and functional properties of enzymatic protein hydrolysates from defatted Camellia oleifera seed cake. J. Food Sci. Technol. 52, 5681–5690 (2015). https://doi.org/10.1007/s13197-014-1693-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. C.C. Almeida, M.L.G. Monteiro, B.R.C. da Costa-Lima, T.S. Alvares, C.A. Conte-Junior, In vitro digestibility of commercial whey protein supplements. LWT 61, 7–11 (2015). https://doi.org/10.1016/j.lwt.2014.11.038

    Article  CAS  Google Scholar 

  18. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Antioxidant activity applying an improved ABTS radical. Free Radic. Biol. Med. 26, 1231–1237 (1999). https://doi.org/10.1016/S0891-5849(98)00315-3

    Article  CAS  PubMed  Google Scholar 

  19. H. Admassu, M.A.A. Gasmalla, R. Yang, W. Zhao, Identification of novel bioactive peptides with # -amylase inhibitory potential from enzymatic protein hydrolysates of red seaweed ( Porphyra spp). J. Appl. Phycol. (2018). https://doi.org/10.1021/acs.jafc.8b00960

    Article  Google Scholar 

  20. R.O. Arise, A.A. Yekeen, O.E. Ekun, In vitro antioxidant and α-amylase inhibitory properties of watermelon seed protein hydrolysates. Exp. Biol Environ (2016). https://doi.org/10.22364/eeb.14.23

    Article  Google Scholar 

  21. M.I. Kazeem, J.O. Adamson, I.A. Ogunwande, Modes of inhibition of α -amylase and α -glucosidase by aqueous extract of morinda lucida benth leaf. Biomed Res. Int. 2013, 1–6 (2013). https://doi.org/10.1155/2013/527570

    Article  CAS  Google Scholar 

  22. S. Yerra et al., THE role of food processing techniques in the detoxification of ODAP in lathyrus. Int. J. Inf. Res. Rev. 3, 2818–2822 (2016)

    Google Scholar 

  23. S. Agrawal, K. Street, A. Amri, H. Nakkoul, I. Centre, Genetic Diversity for β -ODAP Content in Grasspea. 140034, 140034 (2010)

    Google Scholar 

  24. S. Sharma, R. Singh, S. Rana, Bioactive peptides: a review. Int. J. Bioautom. 15, 223–250 (2011). https://doi.org/10.1093/fqs/fyx006

    Article  CAS  Google Scholar 

  25. V. Raikos, T. Dassios, Health-promoting properties of bioactive peptides derived from milk proteins in infant food: a review. Dairy Sci. Technol. 94, 91–101 (2014). https://doi.org/10.1007/s13594-013-0152-3

    Article  CAS  PubMed  Google Scholar 

  26. M.C. García, P. Puchalska, C. Esteve, M.L. Marina, Vegetable foods: a cheap source of proteins and peptides with antihypertensive, antioxidant, and other less occurrence bioactivities. Talanta 106, 328–349 (2013). https://doi.org/10.1016/j.talanta.2012.12.041

    Article  CAS  PubMed  Google Scholar 

  27. M. Yongsheng, S. Xianhui, W. Lintong, Study on optimal conditions of alcalase enzymatic hydrolysis of soybean protein isolate. Adv. J. Food Sci. Technol. 9, 154–158 (2015)

    Article  Google Scholar 

  28. H. Meehnian, A.K. Jana, M.M. Jana, Effect of particle size, moisture content, and supplements on selective pretreatment of cotton stalks by Daedalea flavida and enzymatic saccharification. 3 Biotech. 47, 425–429 (2016). https://doi.org/10.1007/s13205-016-0548-x

    Article  Google Scholar 

  29. S.S. Nadar, P. Rao, V.K. Rathod, Enzyme assisted extraction of biomolecules as an approach to novel extraction technology: A review. Food Res. Int. 108, 309–330 (2018). https://doi.org/10.1016/j.foodres.2018.03.006

    Article  CAS  PubMed  Google Scholar 

  30. S.B. Jadhav, Enzyme-Assisted Extraction of Bioactives. Springer, New York. (2017). https://doi.org/10.1007/978-3-319-51639-4

    Article  Google Scholar 

  31. Y.W. Sari, M.E. Bruins, J.P.M. Sanders, Enzyme assisted protein extraction from rapeseed, soybean, and microalgae meals. Ind. Crops Prod. 43, 78–83 (2013). https://doi.org/10.1016/j.indcrop.2012.07.014

    Article  CAS  Google Scholar 

  32. J. Söderberg, Functional Properties of Legume Proteins Compared to Egg Proteins and Their Potential as Egg Replacers in Vegan Food (SLU, Uppsala, 2013)

    Google Scholar 

  33. H.G. Kristinsson, B.A. Rasco, Fish protein hydrolysates: production, biochemical, and functional properties. Rev. Food Nutr Crit (2000). https://doi.org/10.1080/10408690091189266

    Article  Google Scholar 

  34. A.D. Neklyudov, A.N. Ivankin, A.V. Berdutina, Properties and uses of protein hydrolysates (review). Appl. Biochem. Microbiol. 36, 452–459 (2000). https://doi.org/10.1007/BF02731888

    Article  Google Scholar 

  35. J.F. Zayas, Foaming Properties of Proteins (Springer, Berlin Heidelberg, 1997), pp. 260–309

    Google Scholar 

  36. J.M. Lorenzo, P.E.S. Munekata, B. Gómez, F.J. Barba, C. Pérez-santaescolástica, F. Toldrá, Bioactive peptides as natural antioxidants in food products: a review. Trends Food Sci. Technol. (2018). https://doi.org/10.1016/j.tifs.2018.07.003

    Article  Google Scholar 

  37. T. Bin Zou, T.P. He, H. Bin Li, H.W. Tang, E.Q. Xia, The structure-activity relationship of the antioxidant peptides from natural proteins, Molecules. 21 (2016) 1–14. https://doi.org/10.3390/molecules21010072.

  38. M.A. Ibrahim, M.J. Bester, Structural properties of bioactive peptides with α-glucosidase inhibitory activity. Chem. Biol. Drug Des. 91, 370–379 (2017). https://doi.org/10.1111/ijlh.12426

    Article  PubMed  Google Scholar 

  39. M. Zovko Končić, K. Bljajić, Traditional herbal products used for the management of diabetes in Croatia: linking traditional use with α-glucosidase-inhibitory activity. Bioact. Food Diet Interv. Diabetes (2019). https://doi.org/10.1016/b978-0-12-813822-9.00042-4

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank University Grants Commission- Basic Scientific Research (UGC-BSR), New Delhi, India, for providing the financial support for carrying out this work. There is no conflict of interest in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laxmi Ananthanarayan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dash, P., Ananthanarayan, L. Development of Kesari dal (Lathyrus sativus) protein hydrolysates, with reduced β-ODAP content exhibiting anti-oxidative and anti-diabetic properties. Food Measure 14, 2108–2125 (2020). https://doi.org/10.1007/s11694-020-00458-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00458-5

Keywords

Navigation