Skip to main content
Log in

Evaluation of bio-guided fraction from Laminaria japonica as a natural food preservative based on antimicrobial activity

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Foodborne pathogens cause foodborne diseases and pose a major food safety challenge to the food industry. The aim of this study was to evaluate the antimicrobial activity of Laminaria japonica extract against foodborne pathogens, to optimize the extraction of antimicrobial substance, and to investigate the antimicrobial mechanism. L. japonica ethanol extract exhibited significant (P < 0.05) antimicrobial activities against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Proteus vulgaris, Enterobacter aerogenes and Candida tropicalis. The minimum inhibitory concentration (MIC) values ranged from 0.26 ± 0.10 to 1.67 ± 0.72 mg/mL. Based on the results of antimicrobial activity assay and MIC test, E. coli was used as the represented pathogen to optimize extraction conditions, and to perform the bio-guided assay and investigate the antimicrobial mechanism. An L27(313) orthogonal array design was employed to obtain high levels of antimicrobial substance production. The optimum conditions were extraction temperature 80 °C, extraction time 4 h, and ratio of solid to liquid 1:10 (g/mL). The bio-guided assay showed that dichloromethane fraction from L. japonica ethanol extract (DFL) exhibited the strongest (P < 0.05) antimicrobial activity. The major compounds of DFL were palmitic acid (42.55%), oleic acid (17.40%), and myristic acid (17.31%). Treatment with DFL caused obvious morphological and ultrastructural changes, cytomembrane disruption, membrane depolarization, accumulation of reactive oxygen species (ROS), inhibition of ATPase activity, reduction of DNA content, and subsequently destruction of the cell cycle. Our findings demonstrate that the cell membrane is a primary target of DFL action on E. coli and L. japonica ethanol extract has promising potential as a natural food preservative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y.B. Zhang, X.Y. Liu, Y.F. Wang, P.P. Jiang, S.Y. Quek, Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Food Control 59, 282–289 (2016). https://doi.org/10.1016/j.foodcont.2015.05.032

    Article  CAS  Google Scholar 

  2. J. Tian, X.B. Zeng, Z.Z. Feng, X.M. Miao, X. Peng, Y.W. Wang, Zanthoxylum molle Rehd. Essential oil as a potential natural preservative in management of Aspergillus flavus. Ind. Crop. Prod. 60, 151–159 (2014). https://doi.org/10.1016/j.indcrop.2014.05.045

    Article  CAS  Google Scholar 

  3. M.E. Fleming-Jones, R.E. Smith, Volatile organic compounds in foods: a five year study. J. Agric. Food Chem. 51, 8120–8127 (2003). https://doi.org/10.1021/jf0303159

    Article  CAS  PubMed  Google Scholar 

  4. V.C.H. Wu, X.J. Qiu, A. Bushway, L. Harper, Antibacterial effects of American cranberry (Vaccinium macrocarpon) concentrate on foodborne pathogens. LWT-Food Sci. Technol. 41, 1834–1841 (2008). https://doi.org/10.1016/j.lwt.2008.01.001

    Article  CAS  Google Scholar 

  5. P. Goñi, P. López, C. Sánchez, R. Gómez-Lus, R. Becerríl, C. Nerín, Antimicrobial activity in the vapour phase of a combination of cinnamon and clove essential oils. Food Chem. 116, 982–989 (2009). https://doi.org/10.1016/j.foodchem.2009.03.058

    Article  CAS  Google Scholar 

  6. Q. Shang, X. Shan, C. Cai, J. Hao, G. Li, G. Yu, Dietary fucoidan modulates the gut microbiota in mice by increasing the abundance of Lactobacillus and Ruminococcaceae. Food Funct. 7, 3224–3232 (2016). https://doi.org/10.1039/C6FO00309E

    Article  CAS  PubMed  Google Scholar 

  7. Z. Liu, X. Li, W. Xie, H. Deng, Extraction, isolation and characterization of nanocrystalline cellulose from industrial kelp (Laminaria japonica) waste. Carbohydr. Polym. 173, 353–359 (2017). https://doi.org/10.1016/j.carbpol.2017.05.079

    Article  CAS  PubMed  Google Scholar 

  8. Y. Sun, S. Hou, S. Song, B. Zhang, C. Ai, X. Chen, N. Lin, Impact of acidic, water and alkaline extraction on structural features, antioxidant activities of Laminaria japonica polysaccharides. Int. J. Biol. Macromol. 112, 985–995 (2018). https://doi.org/10.1016/j.ijbiomac.2018.02.066

    Article  CAS  PubMed  Google Scholar 

  9. J.K. Patra, G. Das, K.H. Baek, Chemical composition and antioxidant and antibacterial activities of an essential oil extracted from an edible seaweed Laminaria japonica L. Molecules 20, 12093–12113 (2015). https://doi.org/10.3390/molecules200712093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. D. Kuhn, R. Ziem, T. Scheibel, B. Buhl, G. Vettorello, L.A. Pacheco, D. Heidrich, C. Kauffmann, E.M. de Freitas, E.M. Ethur, L. Hoehne, Antibiofilm activity of the essential oil of Campomanesia aurea O. Berg against microorganisms causing food borne diseases. LWT-Food Sci. Technol. 108, 247–252 (2019). https://doi.org/10.1016/j.lwt.2019.03.079

    Article  CAS  Google Scholar 

  11. N.A. Al-Shabib, F.M. Husain, I. Ahmad, M.S. Khan, R.A. Khan, J.M. Khan, Rutin inhibits mono and multi-species biofilm formation by foodborne drug resistant Escherichia coli and Staphylococcus aureus. Food Control 79, 325–332 (2017). https://doi.org/10.1016/j.foodcont.2017.03.004

    Article  CAS  Google Scholar 

  12. Y. Cortés, E. Hormazábal, H. Leal, A. Urzúa, A. Mutis, L. Parra, A. Quiroz, Novel antimicrobial activity of a dichloromethane extract obtained from red seaweed Ceramium rubrum (Hudson) (Rhodophyta: Florideophyceae) against Yersinia ruckeri and Saprolegnia parasitica, agents that cause diseases in salmonids. Electron. J. Biotechnol. 17, 126–131 (2014). https://doi.org/10.1016/j.ejbt.2014.04.005

    Article  Google Scholar 

  13. H. Omar, A. Al-Judaibiand, A. El-Gendy, Antimicrobial, antioxidant, anticancer activity and phytochemical analysis of the red alga Laurencia papillosa. Int. J. Pharmacol. 14, 572–583 (2018). https://doi.org/10.3923/ijp.2018.572.583

    Article  CAS  Google Scholar 

  14. Y. Wang, Q. Zhang, C.L. Zhang, P. Li, Characterisation and cooperative antimicrobial properties of chitosan/nano-ZnO composite nanofibrous membranes. Food Chem. 132, 419–427 (2012). https://doi.org/10.1016/j.foodchem.2011.11.015

    Article  CAS  PubMed  Google Scholar 

  15. H.Y. Cui, C.H. Zhang, C.Z. Li, L. Lin, Antimicrobial mechanism of clove oil on Listeria monocytogenes. Food Control 94, 140–146 (2018). https://doi.org/10.1016/j.foodcont.2018.07.007

    Article  CAS  Google Scholar 

  16. T. Dikpınar, S. Süzgeç-Selçuk, B.Ö. Çelik, E.A. Uruşak, Antimicrobial activity of rhizomes of Ferulago trachycarpa Boiss. and bioguided isolation of active coumarin constituents. Ind. Crop Prod. 123, 762–767 (2018). https://doi.org/10.1016/j.indcrop.2018.06.072

    Article  CAS  Google Scholar 

  17. M.F.B. Vázquez, L.R. Comini, R.E. Martini, S.C.N. Montoya, S. Bottini, J.L. Cabrera, Ultrasonic-assisted extraction of anthraquinones from Heterophyllaea pustulata Hook f. (Rubiaceae) using ethanol-water mixtures. Ind. Crop Prod. 69, 278–283 (2015). https://doi.org/10.1016/j.indcrop.2015.01.065

    Article  CAS  Google Scholar 

  18. S. Tajbakhsh, M. Ilkhani, A. Rustaiyan, K. Larijani, K. Sartavi, R. Tahmasebi, G. Asayesh, Antibacterial effect of the brown alga Cystoseira trinodis. J. Med. Plants Res. 5, 4654–4657 (2011)

    Google Scholar 

  19. K.H. Kim, D. Yu, S.H. Eom, H.J. Kim, D.H. Kim, H.S. Song, D.M. Kim, Y.M. Kim, Fucofuroeckol-A from edible marine alga Eisenia bicyclis to restore antifungal activity of fluconazole against fluconazole-resistant Candida albicans. J. Appl. Phycol. 30, 605–609 (2018). https://doi.org/10.1007/s10811-017-1232-1

    Article  CAS  Google Scholar 

  20. A.P. Baliano, E.F. Pimentel, A.R. Buzin, T.Z. Vieira, W. Romão, L.V. Tose, D. Lenz, T.U. de Andrade, M. Fronza, T.P. Kondratyuk, D.C. Endringer, Brown seaweed Padina gymnospora is a prominent natural wound-care product. Rev. Bras. Farmacogn. 26, 714–719 (2016). https://doi.org/10.1016/j.bjp.2016.07.003

    Article  CAS  Google Scholar 

  21. L. Shi, F. Ren, X. Zhao, Y. Du, F. Han, Supercritical carbon dioxide extraction of Microula sikkimensis seed oil. J. Am. Oil Chem. Soc. 87, 1221–1226 (2010). https://doi.org/10.1007/s11746-010-1602-1

    Article  CAS  Google Scholar 

  22. H.L. Alakomi, E. Skyttä, M. Saarela, T. Mattila-Sandholm, K. Latva-Kala, I.M. Helander, Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Appl. Environ. Microb. 66, 2001–2005 (2000). https://doi.org/10.1128/AEM.66.5.2001-2005.2000

    Article  CAS  Google Scholar 

  23. J. Zhang, Z.G. Tian, J.H. Wang, A.R. Wang, Advance in antimicrobial molecular mechanism of organic acids. Acta Vet. Zootechn. Sin. 42, 323–328 (2011)

    CAS  Google Scholar 

  24. C.B. Huang, Y. Alimova, T.M. Myers, J.L. Ebersole, Short-and medium-chain fatty acids exhibit antimicrobial activity for oral microorganisms. Arch. Oral Biol. 56, 650–654 (2011). https://doi.org/10.1016/j.archoralbio.2011.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. C. Altieri, A. Bevilacqua, D. Cardillo, M. Sinigaglia, Antifungal activity of fatty acids and their monoglycerides against Fusarium spp. in a laboratory medium. Int. J. Food Sci. Technol. 44, 242–245 (2009). https://doi.org/10.1111/j.1365-2621.2007.01639.x

    Article  CAS  Google Scholar 

  26. G. Singh, S. Maurya, M.P. de Lampasona, C.A.N. Catalan, Studies on essential oils, Part 41. Chemical composition, antifungal, antioxidant and sprout suppressant activities of coriander (Coriandrum sativum) essential oil and its oleoresin. Flavour Fragr. J. 21, 472–479 (2006). https://doi.org/10.1002/ffj.1608

    Article  CAS  Google Scholar 

  27. T. Rosemary, A. Arulkumar, S. Paramasivam, A. Mondragon-Portocarrero, J.M. Miranda, Biochemical, micronutrient and physicochemical properties of the dried red seaweeds Gracilaria edulis and Gracilaria corticata. Molecules 24, 2225 (2019). https://doi.org/10.3390/molecules24122225

    Article  CAS  PubMed Central  Google Scholar 

  28. L. Mateus-Reguengo, L. Barbosa-Pereira, W. Rembangouet, M. Bertolino, M. Giordano, O. Rojo-Poveda, G. Zeppa, Food applications of Irvingia gabonensis (Aubry-Lecomte ex O’Rorke) Baill., the ‘bush mango’: a review. Crit. Rev. Food Sci. 1–14 (2019). https://doi.org/10.1080/10408398.2019.1646704

  29. S. Petropoulos, Â. Fernandes, C. Pereira, N. Tzortzakis, J. Vaz, M. Soković, L. Barros, I.C.F.R. Ferreira, Bioactivities, chemical composition and nutritional value of Cynara cardunculus L. seeds. Food Chem. 289, 404–412 (2019). https://doi.org/10.1016/j.foodchem.2019.03.066

    Article  CAS  PubMed  Google Scholar 

  30. L. Jia, X.L. He, N.G. Tao, H.E. Zhou, Inhibitory effect of Ponkan essential oils at different ripening stage on P. italicum and P. digitatum. Sci. Technol. Food Ind. 34, 67–76 (2013)

    Article  Google Scholar 

  31. L.I. Oliveira de Souza, P.C. Bezzera-Silva, D.M. do Amaral Ferraz Navarro, A.G. de Silva, M.T. Dos Santos Correia, M.V. da Silva, R.C.B.Q. de Figueiredo, The chemical composition and trypanocidal activity of volatile oils from Brazilian Caatinga plants. Biomed. Pharmacother. 96, 1055–1064 (2017). https://doi.org/10.1016/j.biopha.2017.11.121

  32. C.Q. Wang, S.J. Pan, G.f. Zuo, Z.B. Wang, Y. Luo, GC-MS analysis of chemical composition and antibacterial activity of volatile oil from flowers of Elaeagnus lanceolata Warb. apud Diels. Food Sci. 34, 191–193 (2013)

  33. Y.B. Kang, H.S. Shang, Y.M. Cheng, Inhibition activities of paeonol to plant pathogenic fungi in vitro. Acta Phytophylacica Sinica 34, 580–584 (2007)

    CAS  Google Scholar 

  34. Y. Peng, W.N. Cai, S.H. Xiao, H.X. Chen, Study on composition, antioxidant and antibacterial activities of Vetiveria zizanioides oil. Food Ind. 38, 167–170 (2017)

    Google Scholar 

  35. Y.Z. Wang, H. Luo, S.X. Zhao, Analysis of chemical components in volatile oil and the antibacterial activity of extracts from flower of Albizzia julibrissin. Hubei Agric. Sci. 51, 1245–1247 (2012)

    CAS  Google Scholar 

  36. J.J. Kabara, Antimicrobial agents derived from fatty acids. J. Am. Oil Chem. Soc. 61, 397–403 (1984). https://doi.org/10.1007/BF02678802

    Article  CAS  Google Scholar 

  37. G.B. Deng, X.L. Zhang, Y.Y. Wang, Y. Lin, X.L. Chen, Chemical composition and antimicrobial activity of the essential oil of Iris pallida Lam. Chem. Ind. Forest Prod. 28, 39–44 (2008)

    CAS  Google Scholar 

  38. S.A. Alrumman, In vitro antimicrobial activity and GC-MS findings of the gel of Aloe vacillans forssk. of Abha region, Saudi Arabia. Arab. J. Sci. Eng. 43, 155–162 (2018). https://doi.org/10.1007/s13369-017-2785-7

    Article  CAS  Google Scholar 

  39. E. Witkowska-Banaszczak, J. Dlugaszewska, Essential oils and hydrophilic extracts from the leaves and flowers of Succisa pratensis Moench. and their biological activity. J. Pharm. Pharmacol. 69, 1531–1539 (2017). https://doi.org/10.1111/jphp.12784

    Article  CAS  PubMed  Google Scholar 

  40. X. Deng, S.Z. Tang, Q. Wu, J. Tian, W.W. Riley, Z.Q. Chen, Inactivation of Vibrio parahaemolyticus by antimicrobial photodynamic technology using methylene blue. J. Sci. Food Agric. 96, 1601–1608 (2016). https://doi.org/10.1002/jsfa.7261

    Article  CAS  PubMed  Google Scholar 

  41. B. Ibrahim, A. Sowemimo, L. Spies, T. Koekomoer, M. van de Venter, O.A. Odukoya, Antiproliferative and apoptosis inducing activity of Markhamia tomentosa leaf extract on HeLa cells. J. Ethnopharmacol. 149, 745–749 (2013). https://doi.org/10.1016/j.jep.2013.07.040

    Article  PubMed  Google Scholar 

  42. J.M. Kang, L. Liu, X.X. Wu, Y.Y. Sun, Z.F. Liu, Effect of thyme essential oil against Bacillus cereus planktonic growth and biofilm formation. Appl. Microbiol. Biotechnol. 102, 10209–10218 (2018). https://doi.org/10.1007/s00253-018-9401-y

    Article  CAS  PubMed  Google Scholar 

  43. P. Fei, M.A. Ali, S.Y. Gong, Q. Sun, X. Bi, S.F. Liu, L. Guo, Antimicrobial activity and mechanism of action of olive oil polyphenols extract against Cronobacter sakazakii. Food Control 94, 289–294 (2018). https://doi.org/10.1016/j.foodcont.2018.07.022

    Article  CAS  Google Scholar 

  44. M. Díaz, M. Herrero, L.A. García, C. Quiros, Application of flow cytometry to industrial microbial bioprocesses. Biochem. Eng. J. 48, 385–407 (2010). https://doi.org/10.1016/j.bej.2009.07.013

    Article  CAS  Google Scholar 

  45. A. Sharma, S. Srivastava, Anti-Candida activity of two-peptide bacteriocins, plantaricins (Pln E/F and J/K) and their mode of action. Fungal. Biol. 118, 264–275 (2014). https://doi.org/10.1016/j.funbio.2013.12.006

    Article  CAS  PubMed  Google Scholar 

  46. K.R. Wang, W. Dang, J.Q. Xie, R.R. Zhu, M.Y. Sun, F.J. Jia, Y.Y. Zhao, X.P. An, S. Qiu, X.Y. Li, Z.L. Ma, W.J. Yan, R. Wang, Antimicrobial peptide protonectin disturbs the membrane integrity and induces ROS production in yeast cells. BBA Biomembranes 1848, 2365–2373 (2015). https://doi.org/10.1016/j.bbamem.2015.07.008

    Article  CAS  PubMed  Google Scholar 

  47. I.K. Maurya, S. Pathak, M. Sharma, H. Sanwal, P. Chaudhary, S. Tupe, M. Deshpande, V.S. Chauhan, R. Prasad, Antifungal activity of novel synthetic peptides by accumulation of reactive oxygen species (ROS) and disruption of cell wall against Candida albicans. Peptides 2011, 1732–1740 (2011). https://doi.org/10.1016/j.peptides.2011.06.003

    Article  CAS  Google Scholar 

  48. S. Burt, Essential oils: their antibacterial properties and potential applications in foods—a review. Int. J. Food Microbiol. 94, 223–253 (2004). https://doi.org/10.1016/j.ijfoodmicro.2004.03.022

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by National Natural Science Foundation of China (No. 31601677), Natural Science Foundation of Shanxi Province, China (No. 201701D221179), and Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province, China (STIP; No. 2016117). We thank Austin Schultz, PhD, from Liwen Bianji, Edanz Editing China, for editorial assistance with the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Cai.

Ethics declarations

Conflicts of interest

Authors declare that there is no competing financial interest.

Ethical approval

Authors declare that there is no any study with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, J., Yang, D., Zhang, J. et al. Evaluation of bio-guided fraction from Laminaria japonica as a natural food preservative based on antimicrobial activity. Food Measure 14, 735–748 (2020). https://doi.org/10.1007/s11694-019-00320-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-019-00320-3

Keywords

Navigation