Skip to main content
Log in

In Vitro Antimicrobial Activity and GC–MS Findings of the Gel of Aloe vacillans Forssk. of Abha Region, Saudi Arabia

  • Research Article - Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A great variety of weeds grow in the Abha area, Saudi Arabia, at more than 2700 m above sea level. The aim of this study was to evaluate the antimicrobial activities of various extracts of fresh and dry leaf gel of Aloe vacillans against eight clinical isolates of human pathogens. The chemical compounds present in the gel extract were identified and quantified by gas chromatography–mass spectrometry. Solvent extracts inhibited 62.5% of the examined microbes, whereas the fresh leaf extract was more potent and active against Staphylococcus aureus, Micrococcus luteus, Klebsiella oxytocam, Proteus mirabilis, and Candida albicans compared to the dry leaf extract. No antimicrobial activities were observed against Klebsiella pneumonia, Shigella flexneri, and Pseudomonas aeruginosa. Candida albicans was the most susceptible pathogen based on its zone of inhibition. The maximum inhibitory activities were shown by the fresh gel of the chloroform extract against M. luteus, the methanol extract against S. aureus, the petroleum ether extract against P. mirabilis, C. albicans, and K. pneumoniae, and hot water extracts against K. oxytocam. Gram-positive bacteria and C. albicans were more susceptible than gram-negative bacteria. Compounds were identified and quantified; the major constituents of the gel were 1,3-dimethoxy-2-propanol and glycerol. Acetoglycerides, ethanol, 5-(hydroxymethyl)-2-furaldehyde, palmitic acid, butane, 1,2:3,4-diepoxy-,(.\(+/-\).)-, 2-deoxy-d-galactose, butyl acetate, 2,2-dimethoxyethanol, diethyl phthalate, phytol, octadecanoic acid, gamma-linolenic acid, and stearic acid were present in low amounts. Therefore, because of its antimicrobial activities and useful phytochemical composition, A. vacillans leaf gel is a promising pharmaceutical drug for specific microbial infections and for improving health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Foster, S.: Aloe vera: The Succulent with Skin Soothing Cell Protecting Properties. Herbs for Health Magazine. Health World Online (1999). http://www.healthy.net/library/articles/hfh/Aloe.htm

  2. Davis, H.R.: Aloe vera: A Scientific Approach, pp. 3–5. Vantage Press, New York (1997)

  3. Qasem, M.A., et al.: Damascus Univ. J. Basic Sci. 29(1), 127–135 (2013)

  4. Wasae, et al.: University of Aden. J. Nat. Appl. Sci. 18(1), 91–104 (2014)

  5. Nascimento, G.G.F.; Lacatelli, J.; Freitas, P.C.; Silva, G.L.: Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria. Braz. J. Microbiol. 31(4), 886–891 (2000)

    Article  Google Scholar 

  6. Appiah, D.A.S.; Vlas, T.D.C.: Interpretation of low praziquantel cure rates of Schistosoma mansoni. Trends Parasitol. 18, 95–143 (2002)

    Article  Google Scholar 

  7. Barbour, E.K.; Al-Sharif, M.; Sagherian, V.K.; Habre, A.N.; Talhouk, R.S.; Talhouk, S.N.: Screening of selected indigenous plants of Lebanon for antimicrobial activity. J. Ethnopharmacol. 93, 1–7 (2004)

    Article  Google Scholar 

  8. Zandi, K.; Zadeh, M.A.; Sartavi, K.; Rastian, Z.: Antiviral activity of Aloe vera against herpes simplex virus type 2: an in vitro study. Afr. J. Biotechnol. 6, 1770–1773 (2007)

    Article  Google Scholar 

  9. Abd-Alla, H.I.; Abu-Gabal, N.S.; Hassan, A.Z.; El-Safty, M.M.; Shalaby, N.M.: Antiviral activity of Aloe hijazensis against some haemagglutinating viruses infection and its phytoconstituents. Arch. Pharm. Res. 35, 1347–1354 (2012)

    Article  Google Scholar 

  10. Fox, L.T.; Gerber, M.; Preez, J.L.D.; Plessis, J.D.; Hamman, J.H.: Skin permeation enhancement effects of the gel and whole-leaf materials of Aloe vera, Aloe marlothii and Aloe ferox. J. Pharm. Pharmacol. 67(1), 96–106 (2015)

    Article  Google Scholar 

  11. Reynolds, T.; Dweck, A.C.: Aloe vera leaf gel: a review update. J. Ethnopharmacol. 3, 3–37 (1999)

    Article  Google Scholar 

  12. Choi, S.; Chung, M.H.: A review on the relationship between Aloe vera components and their biologic effects. Semin. Integr. 3, 53–62 (2003)

    Article  Google Scholar 

  13. Athiban, P.P.; Borthakur, B.J.; Ganesan, S.; Swathika, B.: Evaluation of antimicrobial efficacy of Aloe vera and its effectiveness in decontaminating Gutta-percha cones. J. Conserv. Dent. 15, 246–8 (2012)

    Article  Google Scholar 

  14. Moustafa, M.F.; Alrumman, S.A.: First report about pharmaceutical properties and phytochemical analysis of Rosa abyssinica R. Br. ex Lindl. (Rosaceae). Pak. J. Pharm. Sci. 28(6), 2009–17 (2015)

    Google Scholar 

  15. Alrumman, S.A.: Phytochemical and antimicrobial properties of Tamarix aphylla L. leaves growing naturally in the Abha Region, Saudi Arabia. Arab. J. Sci. Eng. 41, 2123–2129 (2016)

    Article  Google Scholar 

  16. Salvat, A.; Antonacci, L.; Fortunato, R.H.; Suárez, E.Y.; Godoy, H.M.: Antimicrobial activity in methanolic extracts of several plant species from Northern Argentina. Phytomedicine 11(2), 230–234 (2004)

    Article  Google Scholar 

  17. Alrumman, S.A.; Moustafa, M.F.; Hesham, A.; Alamri, S.A.; Hashem, M.: Phytochemical analysis and inhibitory effects of extracts of early fruits stages of Ficus palmate Forssk on some pathogenic microorganism. Egypt. Acad. J. Biol. Sci. 6(1), 131–139 (2014)

    Google Scholar 

  18. Moustafa, M.F.M.: Apyrase, streptavidin-binding protein and antimicrobial activity in Pisum sativum. Russ. J. Plant. Physiol. 61(4), 496–502 (2014)

    Article  Google Scholar 

  19. Ezhilan, B.P.; Neelamegam, R.: GC–MS analysis of phytocomponents in the ethanol extract of Polygonum chinense L. Pharmacogn. Res. 4(1), 11–14 (2012)

    Article  Google Scholar 

  20. Moustafa, M.F.; Hesham, A.; Quraishi, M.S.; Alrumman, S.A.: Variations in genetic and chemical constituents of Ziziphus spina-christi L. populations grown at various altitudinal zonation up to 2227 m height. Genet. Eng. Biotechnol. 14, 349–362 (2016)

    Article  Google Scholar 

  21. Mahmoud, M.; Dema, A.; Osama, M.; Sulaiman, A.: An application of genetics–chemicals constituents to the relatedness of three Euphorbia species. Biologia 71(11), 1240–1249 (2016)

    Google Scholar 

  22. Bergen, P.J.; Landersdorfer, C.B.; Lee, H.J.; Li, J.; Nation, R.L.: ‘Old’ antibiotics for emerging multidrug-resistant bacteria. Curr. Opin. Infect. Dis. 25(6), 626–33 (2012)

    Article  Google Scholar 

  23. Biswas, S.; Brune, J.M.; Dubus, J.C.; Reynaud-Gaubert, M.; Rolain, J.M.: Colistin: an update on the antibiotic of the 21st century. Expert. Rev. Anti. Infect. Ther. 10(8), 917–34 (2012)

    Article  Google Scholar 

  24. Hirsch, E.B.; Tam, V.H.: Detection and treatment options for Klebsiella pneumoniae carbapenemases (KPCs): an emerging cause of multidrug-resistant infection. J. Antimicrob. Chemother. 65, 1119–25 (2010)

    Article  Google Scholar 

  25. Amani, E.I.K.; Hadia, B.; Geraldine, S.H.; Gary, W.P.; David, L.L.: Antimicrobial resistance in Cairo Egypt 1999–2000: a survey of five hospitals. J. Antimicrob. Chemother. 51, 625–630 (2003)

    Article  Google Scholar 

  26. Christof, E.; Ralf, R.R.; Michael, K.; Johannes, B.; Dieter, H.; George, P.: Nationwide German multicentre study on prevalence of antibiotic resistance in Staphylococcal bloodstream isolates and comparative in vitreo activities of quinupristin–dalfopristin. J. Clin. Microbiol. 38(8), 2819–2823 (2000)

    Google Scholar 

  27. Akova, M.; Daikos, G.L.; Tzouvelekis, L.; Carmeli, Y.: Interventional strategies and current clinical experience with carbapenemase-producing Gram-negative bacteria. Clin. Microbiol. Infect. 18, 439–448 (2012)

    Article  Google Scholar 

  28. Bojlul, B.; John, V.O.; Thomas, J.S.; Albin, M.A.; Torres, S.: A cold water extract of Fucus vesiculosus inhibits lipopolysaccharide (LPS) induced pro-inflammatory responses in the porcine colon ex-vivo model. Innov. Food Sci. Emerg. Technol. 37, 229–236 (2016)

    Article  Google Scholar 

  29. Bakht, J.; Tayyab, M.; Ali, H.; Islam, A.; Shafi, M.: Effect of different solvent extracted sample of Allium sativum (L.) on bacteria and fungi. Afr. J. Biotechnol. 10(31), 5910–15 (2011)

    Google Scholar 

  30. Gozalbo, D.; Roig, P.; Villamón, E.; Gil, M.L.: Candida and candidiasis: the cell wall as a potential molecular target for antifungal therapy. Curr. Drug Targets 4(2), 117–135 (2004)

    Article  Google Scholar 

  31. Weidong, Z.; Scott, G.F.: Interactions of Candida albicans with epithelial cells. Cell Microbiol. 12(3), 273–282 (2010)

    Article  Google Scholar 

  32. Villar, C.C.; Kashleva, H.; Nobile, C.J.; Mitchell, A.P.; Dongari-Bagtzoglou, A.: Mucosal tissue invasion by Candida albicans is associated with E-cadherin degradation, mediated by transcription factor Rim101p and protease Sap5p. Infect. Immun. 75, 2126–2135 (2007)

    Article  Google Scholar 

  33. Wendakoon, C.; Peter, C.; Daniel, G.: Evaluation of selected medicinal plants extracted in different ethanol concentrations for antibacterial activity against human pathogens. J. Med. Plants Res. 1(2), 60–68 (2012)

    Google Scholar 

  34. Sasidharan, I.; Menon, N.: Comparative chemical composition and antimicrobial activity fresh & dry ginger oils (Zingiber officinale Roscoe). Int. J. Curr. Pharm. Res. 2(4), 40–43 (2010)

    Google Scholar 

  35. Bitu, V.; Botelho, M.A.; da Costa, J.G.M.; Rodrigues, F.F.G.; Veras, H.N.H.; Martins, K.T.; Lyra, A.; Coluchi, G.G.; Ruela, R.S.; Queiroz, D.B.; Siqueira, J.d.S.; Quintans-Junior, L.J.: Phythochemical screening and antimicrobial activity phythochemical of essential oil from Lippia gracillis. Rev. Bras. Farmacogn. 22(NS), 69–75 (2012)

  36. Abascal, K.; Ganora, L.; Yarnell, E.: The effect of freeze-drying and its implications for botanical medicine: a review. Phytother. Res. 19, 655–660 (2005)

    Article  Google Scholar 

  37. Wattanasatcha, A.; Rengpipat, S.; Wanichwecharungruang, S.: Thymol nanospheres as an effective anti-bacterial agent. Int. J. Pharm. 434(1–2), 360–365 (2012)

    Article  Google Scholar 

  38. Shrivastava, S.; Bera, T.; Roy, A.; Singh, G.; Ramachandrarao, P.; Dash, D.: Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18(22), 225103–225111 (2007)

  39. Tamboli, D.P.; Lee, D.S.: Mechanistic antimicrobial approach of extracellularly synthesized silver nanoparticles against gram positive and gram negative bacteria. J. Hazard. Mater. 260, 878–884 (2013)

  40. Wenzel, A.; Kornum, F.; Knudsen, M.; Lau, E.F.: Antimicrobial efficiency of ethanol and 2-propanol alcohols used on contaminated storage phosphor plates and impact on durability of the plate. Dentomaxillofacc. Radiol. 42(6), 2–6 (2013)

    Google Scholar 

  41. Oh, D.H.; Marshall, D.L.: Antimicrobial activity of ethanol, glycerol monolaurate or lactic acid against Listeria monocytogenes. Int. J. Food. Microbiol. 20(4), 239–46 (1993)

    Article  Google Scholar 

  42. van Baare, J.; Buitenwerf, J.; Hoekstra, M.J.; du Pont, J.S.: Virucidal effect of glycerol as used in donor skin preservation. Burns 20, S77–80 (1994)

    Article  Google Scholar 

  43. Sagiv, A.E.; Dikstein, S.; Ingber, A.: The efficiency of humectants as skin moisturizers in the presence of oil. Skin Res. Technol. 7, 32–5 (2001)

    Article  Google Scholar 

  44. Fluhr, J.W.; Mao-Qiang, M.; Brown, B.E.; Wertz, P.W.; Crumrine, D.; Sundberg, J.P.; Feingold, K.R.; Elias, P.M.: Glycerol regulates stratum corneum hydration in sebaceous gland deficient (asebia) mice. J. Invest. Dermatol. 120, 728–37 (2003)

    Article  Google Scholar 

  45. Lens, C.; Malet, G.; Cupferman, S.: Antimicrobial activity of butyl acetate, ethyl acetate and Isopropyl alcohol on undesirable microorganisms in cosmetic products. Int. J. Cosmet. Sci. 38(5), 476–80 (2016)

    Article  Google Scholar 

  46. Al-Bari, M.A.A.; Sayeed, M.A.; Rahman, M.S.; Mossadik, M.A.: Characterization and antimicrobial activities of a phthalic acid derivative produced by Streptomyces bangladeshiensis—a novel species collected in Bangladesh. Res. J. Med. Med. Sci. 1, 77–81 (2006)

    Google Scholar 

  47. Rameshthangam, P.; Ramasamy, P.: Antiviral activity of bis(2-methylheptyl)phthalate isolated from Pongamia pinnata leaves against white spot syndrome virus of Penaeus monodon Fabricius. Virus Res. 126, 38–44 (2007)

    Article  Google Scholar 

  48. El Shoubaky, G.A.; El Rahman Salem, E.A.: Active ingredients fatty acids as antibacterial agent from the brown algae Padina pavonica and Hormo-physa triquetra. J. Coast Life Med. 2, 535–542 (2014)

    Google Scholar 

  49. Horrobin, D.F.: Nutritional and medical importance of gamma-linolenic acid. Prog. Lipid Res. 31, 163–194 (1992)

    Article  Google Scholar 

  50. Surjushe, A.; Vasani, R.; Saple, D.G.: Aloe vera: a short review. Indian J. Dermatol. 53(4), 163–166 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sulaiman Abdullah Alrumman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alrumman, S.A. In Vitro Antimicrobial Activity and GC–MS Findings of the Gel of Aloe vacillans Forssk. of Abha Region, Saudi Arabia. Arab J Sci Eng 43, 155–162 (2018). https://doi.org/10.1007/s13369-017-2785-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2785-7

Keywords

Navigation