Skip to main content

Advertisement

Log in

Pushing the limits of automatic computational protein design: design, expression, and characterization of a large synthetic protein based on a fungal laccase scaffold

  • METHODOLOGY ARTICLE
  • Published:
Systems and Synthetic Biology

Abstract

The de novo engineering of new proteins will allow the design of complex systems in synthetic biology. But the design of large proteins is very challenging due to the large combinatorial sequence space to be explored and the lack of a suitable selection system to guide the evolution and optimization. One way to approach this challenge is to use computational design methods based on the current crystallographic data and on molecular mechanics. We have used a laccase protein fold as a scaffold to design a new protein sequence that would adopt a 3D conformation in solution similar to a wild-type protein, the Trametes versicolor (TvL) fungal laccase. Laccases are multi-copper oxidases that find utility in a variety of industrial applications. The laccases with highest activity and redox potential are generally secreted fungal glycoproteins. Prokaryotic laccases have been identified with some desirable features, but they often exhibit low redox potentials. The designed sequence (DLac) shares a 50% sequence identity to the original TvL protein. The new DLac gene was overexpressed in E. coli and the majority of the protein was found in inclusion bodies. Both soluble protein and refolded insoluble protein were purified, and their identity was verified by mass spectrometry. Neither protein exhibited the characteristic T1 copper absorbance, neither bound copper by atomic absorption, and neither was active using a variety of laccase substrates over a range of pH values. Circular dichroism spectroscopy studies suggest that the DLac protein adopts a molten globule structure that is similar to the denatured and refolded native fungal TvL protein, which is significantly different from the natively secreted fungal protein. Taken together, these results indicate that the computationally designed DLac expressed in E. coli is unable to utilize the same folding pathway that is used in the expression of the parent TvL protein or the prokaryotic laccases. This sequence can be used going forward to help elucidate the sequence requirements needed for prokaryotic multi-copper oxidase expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alexandre G, Zhulin IB (2000) Laccases are widespread in bacteria. Trends Biotechnol 18:41–42

    Article  PubMed  CAS  Google Scholar 

  • Barton SC, Gallaway J, Atanassov P (2004) Enzymatic biofuel cells for implantable and microscale devices. Chem Rev 104:4867–4886

    Article  PubMed  CAS  Google Scholar 

  • Brissos V, Pereira L, Munteanu FD, Cavaco-Paulo A, Martins LO (2009) Expression system of CotA-laccase for directed evolution and high-throughput screenings for the oxidation of high-redox potential dyes. Biotechnol J 4:558–563

    Article  PubMed  CAS  Google Scholar 

  • Bulter T, Alcalde M, Sieber V, Meinhold P, Schlachtbauer C, Arnold FH (2003) Functional expression of a fungal laccase in Saccharomyces cerevisiae by directed evolution. Appl Environ Microbiol 69:987–995

    Article  PubMed  CAS  Google Scholar 

  • Claus H (2003) Laccases and their occurrence in prokaryotes. Arch Microbiol 179:145–150

    PubMed  CAS  Google Scholar 

  • Dunbrack RL, Karplus M (1993) Backbone-dependent rotamer library for proteins—application to side-chain prediction. J Mol Biol 230:543–574

    Article  PubMed  CAS  Google Scholar 

  • Durão P, Bento I, Fernandes A, Melo E, Lindley PF, Martins L (2006) Perturbations of the T1 copper site in the CotA laccase from Bacillus subtilis: structural, biochemical, enzymatic and stability studies. J Biol Inorg Chem 11:514–526

    Article  PubMed  Google Scholar 

  • Durão P, Chen Z, Fernandes A, Hildebrandt P, Murgida D, Todorovic S, Pereira M, Melo E, Martins L (2008) Copper incorporation into recombinant CotA laccase from Bacillus subtilis: characterization of fully copper loaded enzymes. J Biol Inorg Chem 13:183–193

    Article  PubMed  Google Scholar 

  • Endo K, Hayashi Y, Hibi T, Hosono K, Beppu T, Ueda K (2003) Enzymological characterization of EpoA, a laccase-like phenol oxidase produced by Streptomyces griseus. J Biochem (Tokyo) 133:671–677

    CAS  Google Scholar 

  • Festa G, Autore F, Fraternali F, Giardina P, Sannia G (2008) Development of new laccases by directed evolution: functional and computational analyses. Proteins 72:25–34

    Article  PubMed  CAS  Google Scholar 

  • Gallaway J, Wheeldon I, Rincon R, Atanassov P, Banta S, Barton SC (2008) Oxygen-reducing enzyme cathodes produced from SLAC, a small laccase from Streptomyces coelicolor. Biosens Bioelectron 23:1229–1235

    Article  PubMed  CAS  Google Scholar 

  • Gelo-Pujic M, Kim HH, Butlin NG, Palmore GT (1999) Electrochemical studies of a truncated laccase produced in Pichia pastoris. Appl Environ Microbiol 65:5515–5521

    PubMed  CAS  Google Scholar 

  • Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G (2010) Laccases: a never-ending story. Cell Mol Life Sci 67:369–385

    Article  PubMed  CAS  Google Scholar 

  • Glykys DJ, Banta S (2009) Metabolic control analysis of an enzymatic biofuel cell. Biotechnol Bioeng 102:1624–1635

    Article  PubMed  CAS  Google Scholar 

  • Greenfield NJ (2006) Determination of the folding of proteins as a function of denaturants, osmolytes or ligands using circular dichroism. Nat Protoc 1:2733–2741

    Article  PubMed  CAS  Google Scholar 

  • Gupta N, Farinas ET (2009) Narrowing laccase substrate specificity using active site saturation mutagenesis. Comb Chem High Throughput Screen 12:269–274

    Article  PubMed  CAS  Google Scholar 

  • Hudak NS, Barton SC (2005) Mediated biocatalytic cathode for direct methanol membrane-electrode assemblies. J Electrochem Soc 152:A876–A881

    Article  CAS  Google Scholar 

  • Jaramillo A, Wernisch L, Hery S, Wodak SJ (2002) Folding free energy function selects native-like protein sequences in the core but not on the surface. Proc Natl Acad Sci USA 99:13554–13559

    Article  PubMed  CAS  Google Scholar 

  • Kabsch W, Sander C (1983) Dictionary of protein secondary structure—pattern-recognition of hydrogen-bonded and geometrial features. Biopolymers 22:2577–2637

    Article  PubMed  CAS  Google Scholar 

  • Kunamneni A, Camarero S, Garcia-Burgos C, Plou FJ, Ballesteros A, Alcalde M (2008) Engineering and Applications of fungal laccases for organic synthesis. Microb Cell Fact 7:32

    Article  PubMed  Google Scholar 

  • Li X, Wei Z, Zhang M, Peng X, Yu G, Teng M, Gong W (2007) Crystal structures of E. coli laccase CueO at different copper concentrations. Biochem Biophys Res Commun 354:21–26

    Article  PubMed  CAS  Google Scholar 

  • López-Cruz JI, Viniegra-Gonzalez G, Hernández-Arana A (2006) Thermostability of native and pegylated Myceliophthora thermophila laccase in aqueous and mixed solvents. Bioconjug Chem 17:1093–1098

    Article  PubMed  Google Scholar 

  • Machczynski MC, Vijgenboom E, Samyn B, Canters GW (2004) Characterization of SLAC: a small laccase from Streptomyces coelicolor with unprecedented activity. Protein Sci 13:2388–2397

    Article  PubMed  CAS  Google Scholar 

  • Madzak C, Mimmi MC, Caminade E, Brault A, Baumberger S, Briozzo P, Mougin C, Jolivalt C (2006) Shifting the optimal pH of activity for a laccase from the fungus Trametes versicolor by structure-based mutagenesis. Protein Eng Des Sel 19:77–84

    Article  PubMed  CAS  Google Scholar 

  • Martins LO, Soares CM, Pereira MM, Teixeira M, Costa T, Jones GH, Henriques AO (2002) Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat. J Biol Chem 277:18849–18859

    Article  PubMed  CAS  Google Scholar 

  • Mayer AM, Staples RC (2002) Laccase: new functions for an old enzyme. Phytochemistry 60:551–565

    Article  PubMed  CAS  Google Scholar 

  • Nakamura K, Go N (2005) Function and molecular evolution of multicopper blue proteins. Cell Mol Life Sci 62:2050–2066

    Article  PubMed  CAS  Google Scholar 

  • Ogata K, Jaramillo A, Cohen W, Briand JP, Connan F, Choppin J, Muller S, Wodak SJ (2003) Automatic sequence design of major histocompatibility complex class I binding peptides impairing CD8(+) T cell recognition. J Biol Chem 278:1281–1290

    Article  PubMed  CAS  Google Scholar 

  • Ooi T, Oobatake M, Nemethy G, Scheraga HA (1987) Accesible surface-areas as a measure of the thermodynamic parameters of hydration of peptides. Proc Natl Acad Sci USA 84:3086–3090

    Article  PubMed  CAS  Google Scholar 

  • Petrek M, Otyepka M, Banas P, Kosinova P, Koca J, Damborsky J (2006) CAVER: a new tool to explore routes from protein clefts, pockets and cavities. BMC Bioinform 7:316

    Article  Google Scholar 

  • Piontek K, Antorini M, Choinowski T (2002) Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-A resolution containing a full complement of coppers. J Biol Chem 277:37663–37669

    Article  PubMed  CAS  Google Scholar 

  • Riva S (2006) Laccases: blue enzymes for green chemistry. Trends Biotechnol 24:219–226

    Article  PubMed  CAS  Google Scholar 

  • Rodgers CJ, Blanford CF, Giddens SR, Skamnioti P, Armstrong FA, Gurr SJ (2010) Designer laccases: a vogue for high-potential fungal enzymes? Trends Biotechnol 28:63–72

    Article  PubMed  CAS  Google Scholar 

  • Sakasegawa S, Ishikawa H, Imamura S, Sakuraba H, Goda S, Ohshima T (2006) Bilirubin oxidase activity of Bacillus subtilis CotA. Appl Environ Microbiol 72:972–975

    Article  PubMed  CAS  Google Scholar 

  • Sakurai T, Kataoka K (2007) Basic and applied features of multicopper oxidases, CueO, bilirubin oxidase, and laccase. Chem Rec 7:220–229

    Article  PubMed  CAS  Google Scholar 

  • Salony GargN, Baranwal R, Chhabra M, Mishra S, Chaudhuri TK, Bisaria VS (2008) Laccase of Cyathus bulleri: structural, catalytic characterization and expression in Escherichia coli. Biochim Biophys Acta 1784:259–268

    PubMed  CAS  Google Scholar 

  • Sedlak E, Wittung-Stafshede P (2007) Discrete roles of copper ions in chemical unfolding of human ceruloplasmin. Biochemistry 46:9638–9644

    Article  PubMed  CAS  Google Scholar 

  • Shleev S, Tkac J, Christenson A, Ruzgas T, Yaropolov AI, Whittaker JW, Gorton L (2005) Direct electron transfer between copper-containing proteins and electrodes. Biosens Bioelectron 20:2517–2554

    Article  PubMed  CAS  Google Scholar 

  • Skalova T, Dohnalek J, Ostergaard LH, Osteryaard PR, Kolenko P, Duskova J, Stepankova A, Hasek J (2009) The structure of the small laccase from Streptomyces coelicolor reveals a link between laccases and nitrite reductases. J Mol Biol 385:1165–1178

    Article  PubMed  CAS  Google Scholar 

  • Solomon EI, Sundaram UM, Machonkin TE (1996) Multicopper oxidases and oxygenases. Chem Rev 96:2563–2606

    Article  PubMed  CAS  Google Scholar 

  • Suarez M, Jaramillo A (2009) Challenges in the computational design of proteins. J R Soc Interface 6(Suppl 4):S477–S491

    Article  PubMed  CAS  Google Scholar 

  • Tortosa P, Jaramillo A (2006) Active sites by computational protein design. In: Proceedings of the II BIFI 2006 international conference, pp 96–101

  • Villalobos A, Ness JE, Gustafsson C, Minshull J, Govindarajan S (2006) Gene designer: a synthetic biology tool for constructing artificial DNA segments. BMC Bioinform 7:285

    Article  Google Scholar 

  • Walker JM (2005) The proteomics protocols handbook. Humana Press, Totowa

    Book  Google Scholar 

  • Wernisch L, Hery S, Wodak SJ (2000) Automatic protein design with all atom force-fields by exact and heuristic optimization. J Mol Biol 301:713–736

    Article  PubMed  CAS  Google Scholar 

  • Wheeldon IR, Gallaway JW, Barton SC, Banta S (2008) Bioelectrocatalytic hydrogels from electron-conducting metallopolypeptides coassembled with bifunctional enzymatic building blocks. Proc Natl Acad Sci U S A 105:15275–15280

    Article  PubMed  CAS  Google Scholar 

  • Xu F (1997) Effects of redox potential and hydroxide inhibition on the pH activity profile of fungal laccases. J Biol Chem 272:924–928

    PubMed  CAS  Google Scholar 

  • Xu F, Shin W, Brown SH, Wahleithner JA, Sundaram UM, Solomon EI (1996) A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity, and stability. Biochim Biophys Acta 1292:303–311

    Article  PubMed  Google Scholar 

  • Xu F, Berka RM, Wahleithner JA, Nelson BA, Shuster JR, Brown SH, Palmer AE, Solomon EI (1998) Site-directed mutations in fungal laccase: effect on redox potential, activity and pH profile. Biochem J 334(Pt 1):63–70

    PubMed  CAS  Google Scholar 

  • Xu F, Palmer AE, Yaver DS, Berka RM, Gambetta GA, Brown SH, Solomon EI (1999) Targeted mutations in a Trametes villosa laccase. Axial perturbations of the T1 copper. J Biol Chem 274:12372–12375

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of a Joint Research Project Award from the Alliance Program involving Columbia University and École Polytechnique awarded to S. B and A. J. Financial support was also provided by an AFOSR MURI award (FA9550-06-1-0264) to S. B. D. J. G. acknowledges support from Merck & Co., Inc. and G. S. Z. from the Academy of Finland and the Alfred Kordelin Foundation. A. J. acknowledges support from FP6-NEST-043340 (BioModularH2), FP7-ICT-043338 (Bactocom), FP7-KBBE-212894 (Tarpol), the ATIGE-Genopole and the Fondation pour la Recherche Medicale. A. J. also acknowledges the HPC-Europa program (RII3-CT-2003-506079) and the BSC for supercomputing time. The authors also thank Dr. Ian Wheeldon for the expression and purification of the SLAC protein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Banta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11693_2011_9080_MOESM1_ESM.doc

The supplementary material available in the electronic edition contains the DNA sequence of the DLac gene, buffers and substrates used in the kinetics measurements, and a summary of the mass spectrometry results for the DLac proteins (Glykys et al. Supp Mat.doc) A PDB file of the modeled DLac protein is also included in Supplementary Material. (DOC 88 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glykys, D.J., Szilvay, G.R., Tortosa, P. et al. Pushing the limits of automatic computational protein design: design, expression, and characterization of a large synthetic protein based on a fungal laccase scaffold. Syst Synth Biol 5, 45–58 (2011). https://doi.org/10.1007/s11693-011-9080-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11693-011-9080-9

Keywords

Navigation