Skip to main content
Log in

Isolation, characterization and effect of plant-growth-promoting rhizobacteria on pine seedlings (Pinus pseudostrobus Lindl.)

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

In this study, 10 bacterial strains were isolated from the rhizosphere of coniferous trees on Mount Tláloc in Mexico. The strains were characterized by their capacity to produce auxins, solubilize phosphates and stimulate mycelial growth of the ectomycorrhizal fungus Suillus sp. All isolates were identified at the molecular level. Moreover, an experiment was established to evaluate the response of Pinus pseudostrobus seedlings to inoculation with the rhizobacteria strains. The isolated strains belonged to the species Cupriavidus basilensis, Rhodococcus qingshengii, R. erythropolis, Pseudomonas spp., P. gessardii, Stenotrophomonas rhizophila and Cohnella sp. All of the strains produced auxins; the best producer was R. erythropolis CPT9 (76.4 µg mL−1). P. gessardii CPT6 solubilized phosphate at a significant level (443 µg mL−1). The strain S. rhizophila CPT8 significantly increased the radial growth of the ectomycorrhizal fungus Suillus sp. by 18.8%. Five strains increased the dry mass of the shoots; R. qingshengii CPT4 and R. erythropolis CPT9 increased growth the most, by more than 20%. Inoculation with plant-growth-promoting rhizobacteria can be a very useful practice in a forest nursery to produce healthy, vigorous plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahangarar MA, Dar GH, Bhat ZA (2012) Growth response and nutrient uptake of blue pine (Pinus wallichiana) seedlings inoculated with rhizosphere microorganisms under temperate nursery conditions. Ann For Res 55(2):217–227

    Google Scholar 

  • Anand R, Grayston S, Chanway C (2013) N2-Fixation and seedling growth promotion of lodgepole pine by endohytic Paenibacillus Polymyxa. Microb Ecol 66:369–374

    Article  CAS  PubMed  Google Scholar 

  • Aspray TJ, Frey-Klett P, Jones JE, Whipps JM, Garbaye J, Bending GD (2006) Mycorrhization helper bacteria: a case of specificity for altering ectomycorrhiza architecture but not ectomycorrhiza formation. Mycorrhiza 16:533–541

    Article  PubMed  Google Scholar 

  • Barka EA, Nowak J, Clément C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72(11):7246–7252

    Article  CAS  Google Scholar 

  • Barriuso J, Pereyra MT, García JL, Megías M, Manero FG, Ramos B (2005) Screening for putative PGPR to improve establishment of the symbiosis Lactarius deliciosus- Pinus sp. Microb Ecol 50:82–89

    Article  CAS  PubMed  Google Scholar 

  • Bashan Y, Holguin G (2002) Plant growth-promoting bacteria: a potential tool for arid mangrove reforestation. Trees 16:159–166

    Article  CAS  Google Scholar 

  • Bent E, Tuzun S, Chanway CP, Enebak S (2001) Alterations in plant growth and in root hormone levels of lodgepole pines inoculated with rhizobacteria. Can J Microbiol 47:793–800

    Article  CAS  PubMed  Google Scholar 

  • Bonfante P, Anca IA (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383

    Article  CAS  PubMed  Google Scholar 

  • Brunetta CFMJ, Cuoto AA, Goncalves MR, Gomes JM, Binoti DB, EdeP Fonseca (2007) Avaliação da especificidade de rizobactérias isoladas de diferentes espécies de Pinus sp. Rev Árvore 31(6):1027–1033

    Article  Google Scholar 

  • Brunetta CFMJ, Alfenas CA, Mafia GR, Gomes JM, Binoti DB, Fonseca NAN (2010) Isolamiento e seleςã de rizobactérias promotoras do crescimento de Pinus taeda. Rev Árvore 34(3):399–406

    Article  Google Scholar 

  • Calvaruso C, Turpault MP, Frey-Klett P (2006) Root-associated bacteria contribute to mineral weathering and to mineral nutrition in trees: a budgeting analysis. Appl Environ Microbiol 72(2):1258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cambrón-Sandoval VH, Sánchez-Vargas NM, Sáenz-Romero C, Vargas-Henández JJ, España-Boquera ML, Herrerías-Diego Y (2013) Genetic parameters for seedling growth in Pinus pseudostrobus families under different competitive environments. New For 44:219–232

    Article  Google Scholar 

  • Čejková A, Masák J, Jirku V, Veselý M, Pátek M, Nešvera J (2005) Potential of Rhodococcus erythopolis as a bioremediation organism. World J Microbiol Biotechnol 21:317–324

    Article  CAS  Google Scholar 

  • Chanway CP, Holl FB (1992) Influence of soil biota on Douglas fir Pseudotsuga menziesii seedling growth: the role of rhizosphere bacteria. Can J Bot 70:1025–1031

    Article  Google Scholar 

  • Cuevas-Guzmán R, Cisneros-Lepe EA, Jardel-Peláez EJ, Sánchez-Rodríguez EV, Guzmán-Hernández L, Núñez-López NM, Rodríguez-Guerrero C (2011) Análisis estructural y de diversidad de Abies de Jalisco, México. Rev Mex Biodiv 82:1219–1233

    Article  Google Scholar 

  • Cumming JR, Zawaski C, Desai S, Collart FR (2015) Phosphorus disequilibrium in the tripartite plant-ectomycorrhiza-plant growth promoting rhizobacterial association. J Soil Sci Plant Nutr 15(2):464–485

    CAS  Google Scholar 

  • de Vasconcellos RLF, Cardoso EJBN (2009) Rhizospheric streptomycetes as potential biocontrol agents of Fusarium and Armillaria pine rot and as PGPR for Pinus taeda. Biocontrol 54(6):807–816

    Article  Google Scholar 

  • Enebak SA, Wei G, Kloepper JW (1998) Effects of plant growth-Promoting rhizobacteria on loblolly and slash pine seedlings. For Sci 44(1):139–144

    Google Scholar 

  • Estrada de los Santos P, Martínez-Aguilar L, López-Lara IM, Caballero-Mellado J (2012) Cupriavidus alkaliphilus sp. nov. a new species associated with agricultural plants that grow in alkaline soils. Syst Appl Microbiol 35(5):310–314

    Article  CAS  PubMed  Google Scholar 

  • Frey-Klett P, Garbaye JA, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36

    Article  CAS  PubMed  Google Scholar 

  • Fuentes-Ramírez LE, Cabellero-Mellado J (2005) Bacterial biofertilizers. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Netherlands, pp 143–172

    Google Scholar 

  • Galtier N, Gouy M, Gautier C (1996) SeaView and Phylo_win: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12(6):543–548

    CAS  PubMed  Google Scholar 

  • García JAL, Domenech J, Santamaría C, Camacho M, Daza A, Mañero FJG (2004) Growth of forest plants (pine and holm-oak) inoculated with rhizobacteria: relationship with microbial community structure and biological activity of its rhizosphere. Environ Exp Bot 52:239–251

    Article  Google Scholar 

  • Gogotov IN, Khodakov RS (2008) Surfactant production by the Rhodoccocus erythropolis SH-5 bacteria grown on various carbon sources. Appl Biochem Microbiol 44(2):186–191

    Article  CAS  Google Scholar 

  • Gómez-Romero M, Soto-Correa JC, Blanco-García JA, Sáenz-Romero C, Villegas J, Lindig-Cisneros R (2012) Estudio de especies de pino para restauración de sitios degradados. Agrociencia 46(8):795–807

    Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Holguin G, Bashan Y, Puente E, Carrillo A, Bethlenfalvay G, Rojas A, De Bashan LG (2003) Promoción del crecimiento en plantas por bacterias de la rizosfera. Agric Tec Mex 29:201–211

    Google Scholar 

  • Hrynkiewicz K, Baum C, Leinweber P (2010) Density, metabolic activity, and identity of cultivable rhizosphere bacteria on Salix viminalis in disturbed arable and landfill soils. J Plant Nutr Soil Sci 173(5):747–756

    Article  CAS  Google Scholar 

  • Karnwal A (2009) Production of indole acetic acid by fluorescent Pseudomonas in the presence of l-tryptophan and rice root exudates. J Plant Pathol 91(1):61–63

    CAS  Google Scholar 

  • Kataoka R, Futai K (2009) A new mycorrhizal helper bacterium, Ralstonia species, in the ectomycorrhizal symbiosis between Pinus thunbergii and Suillus granulatus. Biol Fertil Soils 45:315–320

    Article  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Thompson JD (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Matiru VN, Dakora FD (2004) Potential use of rhizobial bacteria as promoters of plant growth for increased yield in landraces of African cereal crops. Afri J Biotechnol 3(1):1–7

    Article  CAS  Google Scholar 

  • Mitchell RG, Wingfield M, Hodge GR, Steenkamp ET, Coutinho TA (2012) Selection of Pinus spp. in South Africa for tolerance to infection by the pitch canker fungus. New For 43:473–489

    Article  Google Scholar 

  • Morgulis A, Coulouris G, Raytselis Y, Madden TL, Agarwala R, Schäffer AA (2008) Database indexing for production MegaBLAST searches. Bioinformatics 24(16):1757–1764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naito M, Kawamoto T, Fujino K, Kobayashi M, Maruhashi K, Tanaka A (2001) Long term repeated biodesulfuration by inmobilized Rhodoccocus erthropolis Ka2-5-1 cells. Appl Microbiol Biotechnol 55:374–378

    Article  CAS  PubMed  Google Scholar 

  • Ouahmane L, Revel JC, Hafidi M, Thioulouse J, Prin Y, Galiana A, Duponnois R (2009) Responses of Pinus halapensis growth, soil microbial catabolic functions and phosphate-solubilizing bacteria after rock phosphate amendment and ectomycorrhizal inoculation. Plant Soil 320:169–179

    Article  CAS  Google Scholar 

  • Park SD, Uh Y, Jang IH, Yoon KJ, Kim HM, Bae YJ (2011) Rhodococcus erythopolis septicaemia in a patient with acute lymphocytic leukaemia. J Med Microbiol 60:252–255

    Article  PubMed  Google Scholar 

  • Pii Y, Mimmo T, Tomasi N, Terzano R, Cesco S, Crecchio C (2015) Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biol Fertil Soils 51(4):403–415

    Article  CAS  Google Scholar 

  • Pii Y, Borruso L, Brusetti L, Crecchino C, Cesco S, Mimmo T (2016) The interaction between iron nutrition, plant species and soil type shapes the rhizosphere microbiome. Plant Physiol Biochem 99:39–48

    Article  CAS  PubMed  Google Scholar 

  • Poole EJ, Bending GD, Whipps JM, Read DJ (2001) Bacteria associated with Pinus sylvestrisLactarius rufus ectomycorrhizas and their effects on mycorrhiza formation in vitro. New Phytol 151:743–751

    Article  PubMed  Google Scholar 

  • Preston GM (2004) Plant perceptions of plant growth-promoting Pseudomonas. Philos Trans R Soc Lond 359:907–918

    Article  CAS  Google Scholar 

  • Probanza A, Garcia JL, Paomino MR, Ramos B, Mañero FG (2002) Pinus pinea L. seedlings growth and bacterial rhizosphere structure after inoculation with PGPR Bacillus (B. licheniformis CECT5106 and B. pumilus CECT5105). Appl Soil Ecol 20:75–84

    Article  Google Scholar 

  • Qian YC, Shi JY, Chen YX, Lou LP, Cui XY, Cao RK, Li PF, Tang J (2010) Characterization of phosphate solubilizing bacteria in sediments from a shallow eutrophic lake and a wetland: isolation, molecular identification and phosphorus release ability determination. Molecules 15(11):8518–8533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorous and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    Article  CAS  Google Scholar 

  • Rincón A, Valladares F, Gimeno TE, Pueyo JJ (2008) Water stress responses of two Mediterranean tree species influenced by native soil microorganisms and inoculation with a plant growth promoting rhizobacterium. Tree Physiol 28:1693–1701

    Article  PubMed  Google Scholar 

  • Rojas A, Holguin G, Glick BR, Bashan Y (2001) Synergism between Phyllobacterium sp. (N2-fixer) and Bacillus licheniformis (P-solubilizer), both from a semiarid mangrove rhizosphere. FEMS Microbiol Ecol 35:181–187

    Article  CAS  PubMed  Google Scholar 

  • Rosselló-Mora R, Amann R (2001) The species concept for prokaryotes. FEMS Microbiol Rev 25(1):39–67

    Article  PubMed  Google Scholar 

  • SAS Institue Inc (1999) The SAS system for windows. Ver. 9.0 SAS Institute Inc., North Carolina (EUA)

    Google Scholar 

  • Sharma T, Rai N (2015) Isolation of Plant Hormone (Indole-3-Acetic Acid) Producing Rhizobacteria and Study on their Effects on Tomato (Lycopersicum esculentum) Seedling. Int J PharmaTech Res 7:099–107

    Google Scholar 

  • Singh N, Kumar S, Bajpai VK, Dubey RC, Maheshwari DK, Kang SC (2010) Biological control of Macrophomina phaseolina by chemotactic fluorescent Pseudomonas aeruginosa PN1 and its plant growth promontory activity in chir-pine. Crop Prot 29:1142–1147

    Article  Google Scholar 

  • Song OR, Lee SJ, Lee YS, Lee SC, Kim KK, Choi YL (2008) Solubilization of insoluble inorganic phosphate by Burkholderia cepacia DA23 isolated from cultivated soil. Braz J Microbiol 39(1):151–156

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  CAS  PubMed  Google Scholar 

  • White AK, Metcalf WW (2007) Microbial metabolism of reduced phosphorus compounds. Annu Rev Microbiol 61:379–400

    Article  CAS  PubMed  Google Scholar 

  • Wierckx N, Koopman F, Ruijssenaars HJ, de Winde JH (2011) Microbial degradation of furanic compounds: biochemistry, genetics, and impact. Appl Microbiol Biotechnol 92(6):1095–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu XQ, Hou L, Sheng JM, Ren JH, Zheng L, Chen D, Ye JR (2012) Effects of ectomycorrhizal fungus Boletus edulis and mycorrhiza helper Bacillus cereus on the growth and nutrient uptake by Pinus thunbergii. Biol Fertil Soils 48(4):385–391

    Article  Google Scholar 

  • Zehnder GW, Murphy JF, Sikora EJ, Kloepper JW (2001) Application of rhizobacteria for induced resistance. Eur J Plant Pathol 107:39–50

    Article  Google Scholar 

  • Zenni RD, Simberloff D (2013) Number of source populations as a potential driver of pineinvasions in Brazil. Biol Invasions 15:1623–1639

    Article  Google Scholar 

  • Zhang Q, Tong MY, Li YS, Gao HJ, Fang XC (2007) Extensive desulfuration of diesel by Rhodoccocus erythropolis. Biotechnol Lett 29:123–127

    Article  CAS  PubMed  Google Scholar 

  • Zhang YG, Cong J, Lu H, Yang CY, Yang YF, Zhou JZ, Li DQ (2014) An integrated study to analyze soil microbial community structure and metabolic potential in two forest types. PLoS ONE 9(4):e93773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhukov DV, Murygina VP, Kalyuzhnyi SV (2007) Kinetic of the degradation of aliphatichydrocarbons by the bacteria Rhodococcus rube y Rhodoccocus erythropolis. Appl Biochem Microbiol 43(6):587–592

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan J. Almaraz-Suarez.

Additional information

Project funding: The work was supported by the project “Impact of Climatic Change and Agricultural Activity on the Emission of Greenhouse Gases and on the Microbial Resources of the Sierra Nevada, Mexico” [“Impacto del Cambio Climáticos y actividad agrícola en la emisión de gases de efecto invernadero y en los recursos microbianos de la Sierra Nevada, México”] No. 213059 funded by the National Council of Science and Technology [Consejo Nacional de Ciencia y Tecnología (CONACyT)].

The online version is available at http://www.springerlink.com

Corresponding editor: Tao Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heredia-Acuña, C., Almaraz-Suarez, J.J., Arteaga-Garibay, R. et al. Isolation, characterization and effect of plant-growth-promoting rhizobacteria on pine seedlings (Pinus pseudostrobus Lindl.). J. For. Res. 30, 1727–1734 (2019). https://doi.org/10.1007/s11676-018-0723-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-018-0723-5

Keywords

Navigation