Skip to main content
Log in

Changes in gas exchange, root growth, and biomass accumulation of Platycladus orientalis seedlings colonized by Serendipita indica

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Serendipita indica (formerly known as Piriformospora indica), a root endophytic fungus, exhibits multiple functions in some agricultural, horticultural, and medicinal plant species. We studied colonization of the roots of Platycladus orientalis, a forest tree species, by S. indica to improve the quality of the seedlings in seedbeds and survival rates in sylviculture. At 20 days after inoculation, S. indica colonized the root cortex of P. orientalis seedlings. Root colonization by S. indica significantly increased net CO2 assimilation, light use efficiency, and biomass accumulation by both roots and shoots, whereas it did not affect the biomass allocation between roots and shoots. In addition, the symbiosis significantly increased root total length, surface area, and volume. In view of the two specific traits of S. indica, i.e., axenic culture and wide colonization in plants, the fungus might be used for improving quality of P. orientalis seedlings and increasing their survival after transplanting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Achatz B, Kogel KH, Franken P, Waller F (2010) Piriformospora indica mycorrhization increases grain yield by accelerating early development of barley plants. Plant Signal Beha 5:1685–1687

    Article  Google Scholar 

  • Arora M, Saxena P, Choudhary DK, Abdin MZ, Varma A (2016) Dual symbiosis between Piriformospora indica and Azotobacter chroococcum enhances the artemisinin content in Artemisia annua L. World J Microbiol Biotechnol 32(2):19. https://doi.org/10.1007/s11274-015-1972-5

    Article  CAS  PubMed  Google Scholar 

  • Badde US, Prasad R, Varma A (2015) Interaction of mycobiont: Piriformospora indica with medicinal plants and plants of economic importance. Afr J Biotechnol 9(54):9214–9226

    Google Scholar 

  • Bakshi M, Sherameti I, Johri AK, Varma A, Oelmüller R (2014) Phosphate availability affects root architecture and development, plant performance and is controlled by root-colonizing microbes. J Endocytobiosis Cell Res 25:56–65

    Google Scholar 

  • Bakshi M, Vahabi K, Bhattacharya S, Sherameti I, Varma A, Yeh K-W, Baldwin I, Johri AK, Oelmüller R (2015) WRKY6 restricts Piriformospora indica-stimulated and phosphate-induced root development in Arabidopsis. BMC Plant Biol 15:305. https://doi.org/10.1186/s12870-015-0673-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baltruschat H, Fodor J, Harrach BD, Niemczyk E, Barna B, Gullner G, Janeczko A, Kogel KH, Schäfer P, Schwarczinger I, Zuccaro A, Skoczowski A (2008) Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytol 180:501–510

    Article  CAS  Google Scholar 

  • Bán R, Baglyas G, Virányi F, Barna B, Posta K, Kiss J, Körösi K (2017) The chemical inducer, BTH (benzothiadiazole) and root colonization by mycorrhizal fungi (Glomus spp.) trigger resistance against white rot (Sclerotinia sclerotiorum) in sunflower. Acta Biol Hung 68(1):50–59

    Article  CAS  PubMed  Google Scholar 

  • Berta G, Trotta A, Fusconi A, Hooker JE, Munro M, Atkinson D, Giovannetti M, Morini S, Fortuna P, Tisserant B, Gianinazzi-Pearson V, Gianinazzi S (1995) Arbuscular mycorrhizal induced changes to plant growth and root system morphology in Prunus cerasifera. Tree Physiol 15:281–294

    Article  CAS  PubMed  Google Scholar 

  • Bilger W, Björkman O (1990) Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25:173–185

    Article  CAS  Google Scholar 

  • Brown AC, Sinclair WA (1981) Colonization and infection of primary roots of Douglas-fir seedlings by the ectomycorrhizal fungus Laccaria laccata. For Sci 27:111–124

    Google Scholar 

  • Bruisson S, Maillot P, Schellenbaum P, Walter B, Gindro K, Deglene-Benbrahim L (2016) Arbuscular mycorrhizal symbiosis stimulates key genes of the phenylpropanoid biosynthesis and stilbenoid production in grapevine leaves in response to downy mildew and grey mould infection. Phytochemistry 131:92–99

    Article  CAS  PubMed  Google Scholar 

  • Camehl I, Drzewiecki C, Vadassery J, Shahollari B, Sherameti I, Forzani C, Munnik T, Hirt H, Oelmüller R (2011) The OXI1 kinase pathway mediates Piriformospora indica-induced growth promotion in Arabidopsis. PLoS Pathog 7(5):e1002051. https://doi.org/10.1371/journal.ppat.1002051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordell CE, Owen HI, Marx DH (1987) Mycorrhizae nursery management for improved seedling quality and field performance. In: Proceedings of intermountain for nursery association, Aug 10–14, 1987, pp 105–115

  • Daneshkhah R, Cabello S, Rozanska E, Sobczak M, Grundler FMW, Wieczorek K, Hofmann J (2013) Piriformospora indica antagonizes cyst nematode infection and development in Arabidopsis roots. J Exp Bot 64:3763–3774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das A, Tripathi S, Varma A (2014) In vitro plant development and root colonization of Coleus forskohlii by Piriformospora indica. World J Microbiol Biotechnol 30:1075–1084

    Article  CAS  PubMed  Google Scholar 

  • Gange AC, West HM (1994) Interactions between arbuscular mycorrhizal fungi and foliar-feeding insects in Plantago lanceolata L. New Phytol 128:79–87

    Article  Google Scholar 

  • García IV, Mendoza RE (2007) Arbuscular mycorrhizal fungi and plant symbiosis in a saline-sodic soil. Mycorrhiza 17:167–174

    Article  PubMed  Google Scholar 

  • Genty B, Briantais J-M, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    Article  CAS  Google Scholar 

  • Glen M, Tommerup IC, Bougher NL, O’Brien PA (2002) Are Sebacinaceae common and widespread ectomycorrhizal associates of Eucalyptus species in Australian forests? Mycorrhiza 12:243–247

    Article  CAS  PubMed  Google Scholar 

  • Habte M, Miyasaka SC, Matsuyama DT (2001) Arbuscular mycorrhizal fungi improve early forest-tree establishment. In: Horst WJ, Schenk MK, Bürkert A, Claassen N, Flessa H, Frommer WB, Goldbach H, Olfs H-W, Römheld V, Sattelmacher B, Schmidhalter U, Schubert S, von Wirén N, Wittenmayer L (eds) Plant nutrition: food security and sustainability of agroecosystems. Kluwer Academic Publishers, Dordrecht, pp 644–645

    Chapter  Google Scholar 

  • Harrach BD, Baltruschat H, Barna B, Fodor J, Kogel K-H (2013) The mutualistic fungus Piriformospora indica protects barley roots from a loss of antioxidant capacity caused by the necrotrophic pathogen Fusarium culmorum. Mol Plant Microbe Int 26:599–605

    Article  CAS  Google Scholar 

  • Hooker JE, Munro M, Atkinson D (1992) Vesicular–arbuscular mycorrhizal fungi induced alteration in poplar root system morphology. Plant Soil 145:207–214

    Article  Google Scholar 

  • Hosseini F, Mosaddeghi MR, Dexter AR (2017) Effect of the fungus Piriformospora indica on physiological characteristics and root morphology of wheat under combined drought and mechanical stresses. Plant Physiol Biochem 118:107–120

    Article  CAS  PubMed  Google Scholar 

  • Javaid A (2009) Arbuscular mycorrhizal mediated nutrition in plants. J Plant Nutr 32:1595–1618

    Article  CAS  Google Scholar 

  • Jogawat A, Saha S, Bakshi M, Dayaman V, Kumar M, Dua M, Varma A, Oelmüller R, Tuteja N, Johri AK (2013) Piriformospora indica rescues growth diminution of rice seedlings during high salt stress. Plant Signal Behav 8:e26891. https://doi.org/10.4161/psb.26891

    Article  CAS  PubMed Central  Google Scholar 

  • Johnson JM, Sherameti I, Ludwig A, Nongbri PL, Sun C, Lou B, Varma A, Oelmuller R (2011) Protocols for Arabidopsis thaliana and Piriformospora indica co-cultivation—a model system to study plant beneficial traits. J Endocytobiosis Cell Res 21:101–113

    Google Scholar 

  • Khalvati M, Bartha B, Dupigny A, Schröder P (2010) Arbuscular mycorrhizal association is beneficial for growth and detoxification of xenobiotics of barley under drought stress. J Soils Sediments 10:54–64

    Article  CAS  Google Scholar 

  • Kharkwal AC, Prasad R, Kharkwal H, Das A, Bhatnagar K, Sherameti I, Oelmüller R, Varma A (2007) Co-cultivation with sebacinales. In: Varma A, Oelmüller R (eds) Advanced techniques in soil microbiology. Springer, Berlin, pp 247–270

    Chapter  Google Scholar 

  • Kitajima M, Butler WL (1975) Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. Biochim Biophys Acta 376:105–115

    Article  CAS  Google Scholar 

  • Kramer DM, Johnson G, Kiirats O, Edwards GE (2004) New flux parameters for the determination of QA redox state and excitation fluxes. Photosynthesis Res 79:209–218

    Article  CAS  Google Scholar 

  • Kumar M, Yadav V, Tuteja N, Johri AK (2009) Antioxidant enzyme activities in maize plants colonized with Piriformospora indica. Microbiology 155:780–790

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Yadav V, Kumar H, Sharma R, Singh A, Tuteja N, Johri AK (2011) Piriformospora indica enhances plant growth by transferring phosphate. Plant Signal Behav 6:723–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee YC, Johnson JM, Chien CT, Sun C, Cai D, Lou B, Oelmüller R, Yeh KW (2011) Growth promotion of Chinese cabbage and Arabidopsis by Piriformospora indica is not stimulated by mycelium-synthesized auxin. Mol Plant Microbe Interact 24:421–431

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhang W, Shen J, Zhou J, Guo Y (2015) Carbon density and its allocation characteristics of young plantation of Platycladus orientalis in the hilly Loess region of Gansu province, China. Sci Silvae Sin 51(6):1–8 (in Chinese with English abstract)

    Google Scholar 

  • Liang M, Liu X, Etienne RS, Huang F, Wang Y, Yu S (2015) Arbuscular mycorrhizal fungi counteract the Janzen–Connell effect of soil pathogens. Ecology 96:562–574

    Article  PubMed  Google Scholar 

  • Liu FC, Xing SJ, Ma HL, Du ZY, Ma BY (2014) Effects of drought stress on growth, nutrition and physiological characteristics of Platycladus orientalis container and bareroot seedlings. J Beijing For Univ 36(5):68–73 (in Chinese with English abstract)

    Google Scholar 

  • Meng L, Zhang A, Wang F, Han X, Wang D, Li S (2015) Arbuscular mycorrhizal fungi and rhizobium facilitate nitrogen uptake and transfer in soybean/maize intercropping system. Front Plant Sci. https://doi.org/10.3389/fpls.2015.00339

    Article  PubMed  PubMed Central  Google Scholar 

  • Miransari M (2010) Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biol 12:563–569

    CAS  PubMed  Google Scholar 

  • Molitor A, Kogel KH (2009) Induced resistance triggered by Piriformospora indica. Plant Signal Behav 4(3):215–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nongbri PL, Oelmüller R (2013) Role of Piriformospora indica in sulfur metabolism in Arabidopsis thaliana. In: Varma A, Kost G, Oelmüller R (eds) Piriformospora indica: sebacinales and their biotechnological applications. Springer, Berlin, pp 295–309

    Chapter  Google Scholar 

  • Oelmüller R, Sherameti I, Tripathi S, Varma A (2009) Piriformospora indica, a cultivable root endophyte with multiple biotechnological applications. Symbiosis 49:1–17

    Article  CAS  Google Scholar 

  • Prasad R, Kamal S, Sharma PK, Oelmuller R, Varma A (2013) Root endophyte Piriformospora indica DSM 11827 alters plant morphology, enhances biomass and antioxidant activity of medicinal plant Bacopa monniera. J Basic Microbiol 53:1016–1024

    Article  CAS  PubMed  Google Scholar 

  • Rathod DP, Brestic M, Shao HB (2011) Chlorophyll a fluorescence determines the drought resistance capabilities in two varieties of mycorrhized and non-mycorrhized Glycine max Linn. Afr J Microbiol Res 5:4197–4206

    Article  CAS  Google Scholar 

  • Reidinger S, Eschen R, Gange AC, Finch P, Bezemer TM (2012) Arbuscular mycorrizal colonization, plant chemistry, and aboveground herbivory on Senecio jacobaea. Acta Oecol 38:8–16

    Article  Google Scholar 

  • Schellenbaum L, Berta G, Ravolanirina F, Tisserant B, Gianinazzi S, Fitter AH (1991) Influence of endo-mycorrhizal infection on root morphology in a micro-propagated woody plant species (Vitis vinifera L.). Ann Bot 68:135–141

    Article  Google Scholar 

  • Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62

    Article  CAS  Google Scholar 

  • Sharma G, Agrawal V (2013) Marked enhancement in the artemisinin content and biomass productivity in Artemisia annua L. shoots co-cultivated with Piriformospora indica. World J Microbiol Biotechnol 29:1133–1138

    Article  CAS  PubMed  Google Scholar 

  • Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18:287–296

    Article  CAS  Google Scholar 

  • Sherameti I, Tripathi S, Varma A, Oelmüller R (2008) The root colonizing endophyte Pirifomospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress-related genes in leaves. Mol Plant Microbe Interact 21:799–807

    Article  CAS  PubMed  Google Scholar 

  • Sinclair WA, Cowles DP, Hee SM (1975) Fusarium root rot of Douglas-fir seedlings: suppression by soil fumigation, fertility management, and inoculation with spores of the fungal symbiont Laccaria laccata. For Sci 21:390–399

    Google Scholar 

  • Singh A, Sharma J, Rexer K-H, Varma A (2000) Plant productivity determinants beyond minerals, water and light: Piriformospora indica—a revolutionary plant growth promoting fungus. Curr Sci 79:1548–1554

    Google Scholar 

  • Song Y, Chen D, Lu K, Sun Z, Zeng R (2015) Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus. Front Plant Sci 6:786. https://doi.org/10.3389/fpls.2015.00786

    Article  PubMed  PubMed Central  Google Scholar 

  • Stein E, Molitor A, Kogel KH, Waller F (2008) Systemic resistance in Arabidopsis conferred by the mycorrhizal fungus Piriformospora indica requires jasmonic acid signaling and the cytoplasmic function of NPR1. Plant Cell Physiol 49:1747–1751

    Article  PubMed  Google Scholar 

  • Strobel NE, Sinclair WA (1991a) Influence of temperature and pathogen aggressiveness on biological control by Laccaria bicolor of Fusarium root rot of Douglas-fir. Phytopathology 81:415–420

    Article  Google Scholar 

  • Strobel NE, Sinclair WA (1991b) Role of flavanolic wall infusions in the resistance induced by Laecaria bieolor to Fusarium oxysporum in primary roots of Douglas-fir. Phytopathology 81:420–425

    Article  CAS  Google Scholar 

  • Strobel NE, Sinclair WA (1992) Role of mycorrhizal fungi in tree defense against fungal pathogens of roots. In: Blanchette RA, Biggs AR (eds) Defense mechanisms of woody plants against fungi. Springer, Berlin, pp 321–352

    Chapter  Google Scholar 

  • Su ZZ, Wang T, Shrivastava N, Chen YY, Liu X, Sun C, Yin Y, Gao QK, Lou BG (2017) Piriformospora indica promotes growth, seed yield and quality of Brassica napus L. Microbiol Res 199:29–39

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Johnson J, Cai D, Sherameti I, Oelmüeller R, Lou B (2010) Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. J Plant Physiol 167:1009–1017

    Article  CAS  Google Scholar 

  • Sun C, Shao Y, Vahabi K, Lu J, Bhattacharya S, Dong S, Ye K-W, Sherameti I, Lou B, Baldwin I, Oelmüller R (2014) The beneficial fungus Piriformospora indica protects Arabidopsis from Verticillium dahliae infection by downregulation plant defense responses. BMC Plant Biol 14:268. https://doi.org/10.1186/s12870-014-0268-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Tabrizi L, Mohammadi S, Delshad M, Moteshare Zadeh B (2015) Effect of arbuscular mycorrhizal fungi on yield and phytoremediation performance of pot marigold (Calendula officinalis L.) under heavy metals stress. Int J Phytoremediation 17:1244–1252

    Article  CAS  PubMed  Google Scholar 

  • Tao L, Ahmad A, de Roode JC, Hunter MD (2016) Arbuscular mycorrhizal fungi affect plant tolerance and chemical defences to herbivory through different mechanisms. J Ecol 104:561–571

    Article  Google Scholar 

  • Tisserant B, Schellenbaum L, Gianinazzi-Pearson V, Gianinazzi S, Berta G (1992) Influence of infection by an endomycorrhizal fungus on root development and root architecture in Platanus acerifolia. Allionia 30:171–181

    Google Scholar 

  • Unnikumar KR, Sree SK, Varma A (2013) Piriformospora indica: a versatile root endophytic symbiont. Symbiosis 60:107–113

    Article  Google Scholar 

  • Vadassery J, Ritter C, Venus Y, Camehl I, Varma A, Shahollari B, Novák O, Strnad M, Ludwig-Müller J, Oelmüller R (2008) The role of auxins and cytokinins in the mutualistic interaction between Arabidopsis and Piriformospora indica. MPMI 21:1371–1383

    Article  CAS  PubMed  Google Scholar 

  • Vadassery J, Ranf S, Drzewiecki C, Mithofer A, Mazars C, Scheel D, Lee J, Oelmüller R (2009) A cell wall extract from the endophytic fungus Piriformospora indica promotes growth of Arabidopsis seedlings and induces intracellular calcium elevation in roots. Plant J 59:193–206

    Article  CAS  PubMed  Google Scholar 

  • Vahabi K, Johnson JM, Drzewiecki C, Oelmüller R (2011) Fungal staining tools to study the interaction between the beneficial endophyte Piriformospora indica with Arabidopsis thaliana roots. J Endocytobiosis Cell Res 21:77–88

    Google Scholar 

  • van Kooten O, Snel J (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res 25:147–150

    Article  PubMed  Google Scholar 

  • Varma A, Verma S, Suhha Sahay N, Butehorn B, Franken P (1999) Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Appl Environ Microbiol 65:2741–2744

    CAS  PubMed  PubMed Central  Google Scholar 

  • Varma A, Singh A, Sudha Sahay NS, Sharma J, Roy A, Kumari M, Rana D, Thakran S, Deka D, Bharti K, Hurek T, Blechert O, Rexer K-H, Kost G, Hahn A, Hock B, Maier W, Walter M, Strack D, Kranner I (2001) Piriformospora indica: an axenically culturable mycorrhiza-like endosymbiotic fungus. In: Hock B (ed) Fungal associations. Springer, New York, pp 125–150

    Chapter  Google Scholar 

  • Veresoglou SD, Rillig MC (2012) Suppression of fungal and nematode plant pathogens through arbuscular mycorrhizal fungi. Biol Lett 8:214–217

    Article  PubMed  Google Scholar 

  • Verma S, Varma A, Rexer KH, Hassel A, Kost G, Sarbhoy A, Bisen P, Butehorn B, Fraken P (1998) Piriformospora indica, gen. et sp. nov., a new root colonizing fungus. Mycologia 9:896–903

    Article  Google Scholar 

  • Wang YM, Liu BZ (1994) Shelter-forest ecological characteristics on semi-arid region of the loess plateau. China Forestry Press, Beijing, pp 105–132 (in Chinese)

    Google Scholar 

  • Watts-Williams SJ, Jakobsen I, Cavagnaro TR, Gronlund M (2015) Local and distal effects of arbuscular mycorrhizal colonization on direct pathway Pi uptake and root growth in Medicago truncatula. J Exp Bot 66:4061–4073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu QS, He XH, Zou YN, Liu CY, Xiao J, Li Y (2012) Arbuscular mycorrhizas alter root system architecture of Citrus tangerine through regulating metabolism of endogenous polyamines. Plant Growth Regul 68:27–35

    Article  CAS  Google Scholar 

  • Yadav V, Kumar M, Deep DK, Kumar H, Sharma R, Tripathi T, Tuteja N, Saxena AK, Johri AK (2010) A phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in phosphate transport to the host plant. J Biol Chem 285:26532–26544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Zhang Q, Dai Y, Liu Q, Tang J, Bian X, Chen X (2015) Effects of arbuscular mycorrhizal fungi on plant growth depend on root system: a meta-analysis. Plant Soil 389:361–374

    Article  CAS  Google Scholar 

  • Ye W, Shen CH, Lin Y, Chen PJ, Xu X, Oelmüller R, Yeh KW, Lai Z (2014) Growth promotion-related miRNAs in Oncidium orchid roots colonized by the endophytic fungus Piriformospora indica. PLoS ONE 9:e84920. https://doi.org/10.1371/journal.pone.0084920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zamani J, Hajabbasi M, Alaie E, Sepehri M, Leuchtmann A, Schulin R (2016) The effect of Piriformospora indica on the root development of maize (Zea mays L.) and remediation of petroleum contaminated soil. Int J Phytoremediation 18:278–287

    Article  CAS  PubMed  Google Scholar 

  • Zarea MJ, Hajinia S, Karimi N, Mohammadi Goltapeh E, Rejali F, Varma A (2012) Effect of Piriformospora indica and Azospirillum strains from saline or non-saline soil on mitigation of the effects of NaCl. Soil Biol Biochem 45:139–146

    Article  CAS  Google Scholar 

  • Zhang H, Franken P (2014) Comparison of systemic and local interactions between the arbuscular mycorrhizal fungus Funneliformis mosseae and the root pathogen Aphanomyces euteiches in Medicago truncatula. Mycorrhiza 24:419–430

    Article  CAS  PubMed  Google Scholar 

  • Zou YN, Huang YM, Wu QS, He XH (2015) Mycorrhiza-induced lower oxidative burst is related with higher antioxidant enzyme activities, net H2O2 effluxes, and Ca2+ influxes in trifoliate orange roots under drought stress. Mycorrhiza 25:143–152

    Article  CAS  PubMed  Google Scholar 

  • Zuccaro A, Lahrmann U, Guldener U, Langen G, Pfiffi S, Biedenkopf D, Wong P, Samans B, Grimm C, Basiewicz M, Murat C, Martin F, Kogel K-H (2011) Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica. PLoS Pathog 7(10):e1002290. https://doi.org/10.1371/journal.ppat.1002290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenying Zhang.

Additional information

Project funding: This study was funded by National Nature Science Foundation of China (31471496).

The online version is available at http://www.springerlink.com

Corresponding editor: Zhu Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C., Wei, Q., Deng, J. et al. Changes in gas exchange, root growth, and biomass accumulation of Platycladus orientalis seedlings colonized by Serendipita indica. J. For. Res. 30, 1199–1207 (2019). https://doi.org/10.1007/s11676-018-0712-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-018-0712-8

Keywords

Navigation