Skip to main content

Advertisement

Log in

Dual symbiosis between Piriformospora indica and Azotobacter chroococcum enhances the artemisinin content in Artemisia annua L.

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

At present, Artemisia annua L. is the major source of artemisinin production. To control the outbreaks of malaria, artemisinin combination therapies (ACTs) are recommended, and hence an ample amount of artemisinin is required for ACTs manufacture to save millions of lives. The low yield of this antimalarial drug in A. annua L. plants (0.01–1.1 %) ensues its short supply and high cost, thus making it a topic of scrutiny worldwide. In this study, the effects of root endophyte, Piriformospora indica strain DSM 11827 and nitrogen fixing bacterium, Azotobacter chroococcum strain W-5, either singly and/or in combination for artemisinin production in A. annua L. plants have been studied under poly house conditions. The plant growth was monitored by measuring parameters like height of plant, total dry weight and leaf yield with an increase of 63.51, 52.61 and 79.70 % respectively, for treatment with dual biological consortium, as compared to that of control plants. This significant improvement in biomass was associated with higher total chlorophyll content (59.29 %) and enhanced nutrition (especially nitrogen and phosphorus, 55.75 and 86.21 % respectively). The concentration of artemisinin along with expression patterns of artemisinin biosynthesis genes were appreciably higher in dual treatment, which showed positive correlation. The study suggested the potential use of the consortium P. indica strain DSM 11827 and A. chroococcum strain W-5 in A. annua L. plants for increased overall productivity and sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdin MZ, Alam P (2015) Genetic engineering of artemisinin biosynthesis: prospects to improve its production. Acta Physiol Plant 37:33

    Article  CAS  Google Scholar 

  • Abdin MZ, Israr M, Rehman RU, Jain SK (2003) Artemisinin, a novel antimalarial drug: biochemical and molecular approaches for enhanced production. Planta Med 69:289–299

    Article  CAS  Google Scholar 

  • Aftab T, Khan MMA, Idrees M et al (2010) Boron induced oxidative stress, antioxidant defence response and changes in artemisinin content in Artemisia annua L. J Agro Crop Sci 196:423–430

    Article  CAS  Google Scholar 

  • Ahlawat S, Saxena P, Alam P, Wajid S, Abdin MZ (2014) Modulation of artemisinin biosynthesis by elicitors, inhibitor, and precursor in hairy root cultures of Artemisia annua L. J Plant Interact 9:811–824

    Article  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzyme in isolated chloroplast polyphenoloxidase in Beta vulgaris L. Plant Physiol 24:1–15

    Article  CAS  Google Scholar 

  • Arnon DI, Hoagland DR (1940) Crop production in artificial solutions and soil with special reference to factors influencing yields and absorption of organic nutrients. Soil Sci 50:463–484

    CAS  Google Scholar 

  • Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1–10

    Article  CAS  Google Scholar 

  • Awasthi A, Bharti N, Nair P et al (2011) Synergistic effect of Glomus mosseae and nitrogen fixing Bacilluc subtilis strain Daz26 on artemisinin content in Artemisia annua L. Appl Soil Ecol 49:125–130

    Article  Google Scholar 

  • Behl RK, Ruppel S, Kothe E, Narula N (2007) Wheat x Azotobacter x VA mycorrhiza interactions towards plant nutrition and growth—a review. J Appl Bot Food Qual 81:95–109

    CAS  Google Scholar 

  • Chaudhary V, Kapoor R, Bhatnagar AK (2008) Effectiveness of two arbuscular mycorrhizal fungi on concentrations of essential oil and artemisinin in three accessions of Artemisia annua L. Appl Soil Ecol 40:174–181

    Article  Google Scholar 

  • Das A, Kamal S, Shakil NA et al (2012) The root endophyte fungus Piriformospora indica leads to early flowering, higher biomass and altered secondary metabolites of the medicinal plant, Coleus forskohlii. Plant Signal Behav 7:103–112

    Article  CAS  Google Scholar 

  • Davies MJ, Atkinson CJ, Burns C et al (2009) Enhancement of artemisinin concentration and yield in response to optimization of nitrogen and potassium supply to Artemisia annua. Ann Bot 104:315–323

    Article  CAS  Google Scholar 

  • Durante M, Caretto S, Quarta A et al (2011) Beta-Cyclodextrins enhance artemisinin production in Artemisia annua suspension cell cultures. Appl Microbiol Biotechnol 90:1905–1913

    Article  CAS  Google Scholar 

  • Garbaye J (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210

    Article  Google Scholar 

  • Gericke S, Kurmies B (1952) The colorimetric determination of phosphoric acid ammonium vanadate molybdate and its application in plant analysis. J Plant Nutr Soil Sci 159:11–21

    Google Scholar 

  • Gosal SK, Karlupia A, Gosal SS, Chhibba IM (2010) Biotization with Piriformospora indica and Pseudomonas fluorescens improves survival rate, nutrient acquisition, field performance and saponin content of micropropagated Chlorophytum sp. Ind J Biotechnol 9:289–297

    CAS  Google Scholar 

  • Hill TW, Kaefer E (2001) Improved protocols for aspergillus medium: trace elements and minimum medium salt stock solutions. Fungal Genet News Lett 48:20–21

    Google Scholar 

  • Hiscox JD, Israelstam GF (1979) A method for the extraction of chlorophyll from leaf tissue with out maceration. Can J Bot 57:1332–1334

    Article  CAS  Google Scholar 

  • Jensen HL (1942) Pro Line Soc. NSW 57:205–212

    Google Scholar 

  • Kapoor R, Chaudhary V, Bhatnagar AK (2007) Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L. Mycorrhiza 17:581–587

    Article  CAS  Google Scholar 

  • Kindermans J-M, Pilloy J, Olliaro P, Gomes M (2007) Ensuring sustained ACT production and reliable artemisinin supply. Malar J 6:125

    Article  CAS  Google Scholar 

  • Kumar M, Yadav V, Kumar H et al (2011) Piriformospora indica enhances plant growth by transferring phosphate. Plant Signal Behav 6:723–725

    Article  CAS  Google Scholar 

  • Lakshminarayana K, Narula N, Hooda IS, Faroda AS (1992) Nitrogen economy in wheat (Triticum aestivum) through use of Azotobacter chroococcum. Ind J Agric Sci 62:75–76

    Google Scholar 

  • Li J, Zhao GZ, Varma A et al (2012) An endophytic Pseudonocardia species induces the production of artemisinin in Artemisia annua. PLoS ONE 7:e51410. doi:10.1371/journal.pone.0051410

    Article  CAS  Google Scholar 

  • Mandal S, Upadhyay S, Wajid S et al (2014) Arbuscular mycorrhiza increase artemisinin accumulation in Artemisia annua by higher expression of key biosynthesis genes via enhanced jasmonic acid levels. Mycorrhiza. doi:10.1007/s00572-014-0614-3

    Google Scholar 

  • McGonigle TP, Miller MH, Evans DG et al (1990) A new method which gives an objective measure of colonisation of roots by vesicular arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • Narula N, Remus R, Deubel A et al (2007) Comparison of the effectiveness of wheat roots colonization by Azotobacter chroococcum and Pantoea agglomerans using serological techniques. Plant Soil Environ 53:167–176

    CAS  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and VAM fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Article  Google Scholar 

  • Prajapati K, Yami KD, Singh A (2008) Plant growth promotional effect of Azotobacter chroococcum, Piriformospora indica and Vermicompost on Rice Plant. Nepal J Sci Tech 9:85–90

    Google Scholar 

  • Price RN, Douglas NM (2009) Artemisinin combination therapy for malaria: beyond good efficacy. Clin Infect Dis 49:1638–1640

    Article  CAS  Google Scholar 

  • Qian GP, Yang YW, Ren QL (2005) Determination of artemisinin in Artemisia annua L. by reversed phase HPLC. J Liq Chromatogr Relat Technol 22:705–712

    Article  CAS  Google Scholar 

  • Ram M, Jain DC, Mishra H et al (2014) Recent advances to enhance yield of artemisinin: a novel antimalarial compound, in Artemisia annua L. plants. In: Aftab T et al (eds) Artemisia annua—pharmacology and biotechnology. Springer, Berlin, pp 173–204

    Chapter  Google Scholar 

  • Rapparini F, Llusia J, Penuelas J (2008) Effect of arbuscular mycorrhizal (AM) colonization on terpene emission and content of Artemisia annua L. Plant Biol 10:108–122

    Article  CAS  Google Scholar 

  • Rathore D, McCutchan TF, Sullivan M et al (2005) Antimalarial drugs: current status and new developments. Expert Opin Investig Drugs 14:871–883

    Article  CAS  Google Scholar 

  • Ro DK, Paradise EM, Ouellet M et al (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943

    Article  CAS  Google Scholar 

  • Sarma MV, Kumar V, Saharan K et al (2011) Application of inorganic carrier-based formulations of fluorescent pseudomonads and Piriformospora indica on tomato plants and evaluation of their efficacy. J Appl Microbiol 111:456–466

    Article  CAS  Google Scholar 

  • Satheesan J, Narayanan AK, Sakunthala M (2012) Induction of root colonization by Piriformospora indica leads to enhanced asiaticoside production in Centella asiatica. Mycorrhiza 22:195–202

    Article  CAS  Google Scholar 

  • Schäfer P, Pfiffi S, Voll LM et al (2009) Manipulation of plant innate immunity and gibberellin as factor of compatibility in the mutualistic association of barley roots with Piriformospora indica. Plant J 59:461–474

    Article  CAS  Google Scholar 

  • Sharma G, Agrawal V (2013) Marked enhancement in the artemisinin content and biomass productivity in Artemisia annua L. shoots co-cultivated with Piriformospora indica. World J Microbiol Biotechnol 29:1133–1138

    Article  CAS  Google Scholar 

  • Sharma SD, Sharma NC, Sharma CL et al (2012) Glomus-Azotobacter symbiosis in apple under reduced inorganic nutrient fertilization for sustainable and economic orcharding enterprise. Sci Hortic 146:175–181

    Article  Google Scholar 

  • Sherameti I, Shahollari B, Venus Y et al (2005) The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif in their promoters. J Biol Chem 280:26241–26247

    Article  CAS  Google Scholar 

  • Shishehbor M, Madani H, Ardakani MR (2013) Effect of vermicompost and biofertilizers on yield and yield components of common millet (Panicum miliaceum). Ann Biol Res 4:174–180

    Google Scholar 

  • Strack D, Fester T (2006) Isoprenoid metabolism and plastid reorganization in arbuscular mycorrhizal roots. New Phytol 172:22–34

    Article  CAS  Google Scholar 

  • Vafadar F, Amooaghaie R, Otroshy M (2014) Effects of plant growth promoting rhizobacteria and arbuscular mycorrhizal fungi on plant growth, stevioside, NPK, and chlorophyll content of Stevia rebaudiana. J Plant Interact 9:128–136

    Article  CAS  Google Scholar 

  • Varma A, Singh A, Sahay S et al (2001) Piriformospora indica: an axenically culturable mycorrhiza-like endosymbiotic fungus. In: Hock B (ed) Mycota IX. Springer, Berlin, pp 123–150

    Google Scholar 

  • Varma A, Sherameti I, Tripathi S et al (2012) The symbiotic fungus Piriformospora indica: review. In: Hock B (ed) Fungal associations, 2nd edn, the mycota, vol IX. Springer, Berlin, pp 231–254

    Chapter  Google Scholar 

  • Verma S, Varma A, Rexer KH et al (1998) Piriformospora indica, gen. et sp. Nov., a new root-colonizing fungus. Mycologia 90:896–903

    Article  CAS  Google Scholar 

  • Walker V, Couillerot O, Felten AV et al (2012) Variation of secondary metabolite levels in maize seedling roots induced by inoculation with Azospirillum, Pseudomonas and Glomus consortium under field conditions. Plant Soil 356:151–163

    Article  CAS  Google Scholar 

  • Wang JW, Zhang Z, Tan RX (2001) Stimulation of artemisinin production in Artemisia annua hairy roots by the elicitor from the endophytic Colletotrichum sp. Biotechnol Lett 23:857–860

    Article  CAS  Google Scholar 

  • WHO (2014) World malaria report 2014. World Health Organization, Geneva

    Google Scholar 

  • Yadav V, Kumar M, Deep DK et al (2010) A phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in phosphate transport to the host plant. J Biol Chem 285:26532–26544

    Article  CAS  Google Scholar 

  • Yakasai AM, Hamza M, Dalhat MM (2015) Adherence to artemisinin-based combination therapy for the treatment of uncomplicated malaria: a systematic review and meta-analysis. J Trop Med. doi:10.1155/2015/189232

    Google Scholar 

  • Zhao SS, Zeng MY (1986) Determination of qinghaosuin in Artemisia annua L. by high performance liquid chromatography. Chin J Pharma Anal 6:3–5

    Google Scholar 

Download references

Acknowledgments

This research is funded by Department of Biotechnology grant. M.A. is gratefully acknowledges the support from Department of Biotechnology project as Junior Research Fellowship. Authors are grateful to Prof. M.Z. Abdin from Jamia Hamdard for providing laboratory facility and expertise to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit Varma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, M., Saxena, P., Choudhary, D.K. et al. Dual symbiosis between Piriformospora indica and Azotobacter chroococcum enhances the artemisinin content in Artemisia annua L.. World J Microbiol Biotechnol 32, 19 (2016). https://doi.org/10.1007/s11274-015-1972-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-015-1972-5

Keywords

Navigation