Skip to main content
Log in

Thermal Spray for Extreme Environments

  • Editorial
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Adapted from Ref 9

Fig. 3
Fig. 4
Fig. 5

References

  1. J. Wigren and L. Pejryd, Tungsten Carbide Coatings on Jet Engine Components: Safe Aviation, Sulzer Tech. Rev., 2000, 2, p 36-39

    Google Scholar 

  2. M.R. Dorfman, U. Erning, and J. Mallon, Benefits of Clearance Control Thermal Spray Coatings: Sealing the Gap, Anti Corros. Methods Mater, 2002, https://doi.org/10.1108/acmm.2002.12849baf.002

    Article  Google Scholar 

  3. P. Meuter, Protecting Pumps Against Abrasive Wear, World Pumps, 2006, 482, p 18-20. https://doi.org/10.1016/S0262-1762(06)71142-7

    Article  Google Scholar 

  4. G. Barbezat and R. Herber, Breakthrough in Improving Car Engine Performance through Coatings, Sulzer Tech. Rev., 2001, 2, p 8-11

    Google Scholar 

  5. R.P. Pecoskie and D.W. Parker, Coatings Protect Severe-service Ball Valves, Adv. Mater. Process, 1993, 144, p 22-25

    CAS  Google Scholar 

  6. T. Schopphoven, A. Gasser, and K. Wissenbach, Investigations on Ultra-High-Speed Laser Material Deposition as Alternative for Hard Chrome Plating and Thermal Spraying, J. Laser Appl., 2016, 28(2), p 022501-022509

    Article  Google Scholar 

  7. P. Hanneforth, in Advanced Materials and Processes, ed. by C. Berndt. The Global Thermal Spray Industry—100 Years of Success; So Whats Next? (ASM International, Materials Park, OH, 2006), pp. 68–70

  8. P.W. Schilke, Advanced Gas Turbine Materials and Coatings, GER-3569G, General Electric Company, Aug 2004

  9. C.C. Berndt and A. Ang, Thermal Spray Challenges: What Do We Do Next?, Adv. Mater. Process, 2017, 175(5), p 55-58

    Google Scholar 

  10. R.A. Miller, Thermal Barrier Coatings for Aircraft Engines: History and Directions, J. Therm. Spray Technol., 1997, 6(1), p 35-42

    Article  CAS  Google Scholar 

  11. X. Huibin, G. Shengkai, and D. Liang, Preparation of Thermal Barrier Coatings for Gas Turbine Blades by EB-PVD, Thin Solid Films, 1998, 334, p 98-102

    Article  Google Scholar 

  12. M. Goral, S. Kotowski, and J. Sieniawski, The Technology of Plasma Spray Physical Vapour Deposition, High Temp. Mater. Proc., 2013, 32(1), p 33-39

    Article  CAS  Google Scholar 

  13. M. Goral, S. Kotowski, A. Nowotnik, M. Pytel, M. Drajewicz, and J. Sieniawski, PS-PVD Deposition of Thermal Barrier Coatings, Surf. Coat. Technol., 2013, 237, p 51-55

    Article  CAS  Google Scholar 

  14. M. Gell, J. Wang, R. Kumar, J. Roth, C. Jiang, and E.H. Jordan, Higher Temperature Thermal Barrier Coatings with the Combined Use of Yttrium Aluminum Garnet and the Solution Precursor Plasma Spray Process, J. Therm. Spray Technol., 2018, 27, p 543-555

    Article  CAS  Google Scholar 

  15. N. Bala, H. Singh, and S. Prakash, Accelerated Hot Corrosion Studies of Cold Spray Ni-50Cr Coating on Boiler Steels, Mater. Des., 2009, 31, p 244-253

    Article  Google Scholar 

  16. N. Bala, H. Singh, and S. Prakash, High Temperature Corrosion Behavior of Cold Spray Ni-20Cr Coating on Boiler Steel in Molten Salt Environment at 900 °C, J. Therm. Spray Technol., 2010, 19, p 110-118

    Article  CAS  Google Scholar 

  17. M. Kumar, H. Singh, N. Singh, and R.S. Joshi, Erosion–Corrosion Behavior of Cold-Spray Nanostructured Ni-20Cr Coatings in Actual Boiler Environment, Wear, 2015, 332, p 1035-1043

    Article  Google Scholar 

  18. G. Kaushal, H. Singh, and S. Prakash, Surface Engineering by Detonation-Gun Spray Coating of 347H Boiler Steel to Enhance Its High Temperature Corrosion Resistance, Mater. High Temp., 2011, 28(1), p 1-11

    Article  CAS  Google Scholar 

  19. H.S. Sidhu, B.S. Sidhu, and S. Prakash, The Role of HVOF Coatings in Improving Hot Corrosion Resistance of ASTM-SA210 GrA1 Steel in the Presence of Na2SO4-V2O5 Salt Deposits, Surf. Coat. Technol., 2006, 200(18–19), p 5386-5394

    Article  CAS  Google Scholar 

  20. T.S. Sidhu, S. Prakash, and R.D. Agrawal, Characterisations of HVOF Sprayed NiCrBSi Coatings on Ni- and Fe-Based Superalloys and Evaluation of Cyclic Oxidation Behaviour of Some Ni-Based Superalloys in Molten Salt Environment, Thin Solid Films, 2006, 515(1–2), p 95-105

    Article  CAS  Google Scholar 

  21. T.S. Sidhu, S. Prakash, and R.D. Agrawal, Hot Corrosion Studies of HVOF Sprayed Cr3C2-NiCr and Ni-20Cr Coatings on a Nickel Based Superalloy at 900 °C, Surf. Coat. Technol., 2006, 201(3–4), p 792-800

    Article  CAS  Google Scholar 

  22. L.M. Berger, Hardmetals as Thermal Spray Coatings, Powder Metall., 2007, 50(3), p 205-214

    Article  CAS  Google Scholar 

  23. L.M. Berger, Application of Hardmetals as Thermal Spray Coatings, Int. J. Refract. Met. Hard Mater., 2015, 49(1), p 350-364

    Article  CAS  Google Scholar 

  24. H.L. De Villiers \Lovelock, Powder/Processing/Structure Relationships in WC-Co Thermal Spray Coatings: A Review of the Published Literature, J. Therm. Spray Technol., 1998, 7(3), p 357-373

    Article  Google Scholar 

  25. S. Zimmermann, H. Keller, and G. Schwier, in Thermal Spray 2003: Advancing the Science and Applying the Technology, 2003. New Carbide Materials for HVOF Spraying (ASM International, Ohio, 2003).

  26. S. Matthews, Development of High Carbide Dissolution/Low Carbon Loss Cr3C2-NiCr Coatings by Shrouded Plasma Spraying, Surf. Coat. Technol., 2014, 258, p 886-900

    Article  CAS  Google Scholar 

  27. J. García et al., Cemented Carbide Microstructures: A Review, Int. J. Refract. Met. Hard Mater., 2019, 80, p 40-68

    Article  Google Scholar 

  28. A.S.M. Ang, C.C. Berndt, and P. Cheang, Deposition Effects of WC Particle Size on Cold Sprayed WC-Co Coatings, Surf. Coat. Technol., 2011, 205(10), p 3260-3267

    Article  CAS  Google Scholar 

  29. Z.G. Ban and L.L. Shaw, Characterization of Thermal Sprayed Nanostructured WC-Co Coatings Derived from Nanocrystalline WC-18wt.% Co Powders, J. Therm. Spray Technol., 2003, 12(1), p 112-119

    Article  CAS  Google Scholar 

  30. B.H. Kear, Thermal Sprayed Nanostructured WC/Co Hardcoatings, J. Therm. Spray Technol., 2000, 9(3), p 399-406

    Article  CAS  Google Scholar 

  31. B.R. Marple and R.S. Lima, Process Temperature/Velocity-Hardness-Wear Relationships for High-Velocity Oxyfuel Sprayed Nanostructured and Conventional Cermet Coatings, J. Therm. Spray Technol., 2005, 14(1), p 67-76

    Article  Google Scholar 

  32. R. Ahmed, Structure Property Relationship of Suspension Thermally Sprayed WC-Co Nanocomposite Coatings, J. Therm. Spray Technol., 2014, 24(3), p 357-377

    Article  Google Scholar 

  33. S. Matthews, M. Hyland, and B. James, Long-Term Carbide Development in High-Velocity Oxygen Fuel/High-Velocity Air Fuel Cr3C2-NiCr Coatings Heat Treated at 900 °C, J. Therm. Spray Technol., 2004, 13(4), p 526-536

    Article  CAS  Google Scholar 

  34. S. Matthews, B. James, and M. Hyland, The Effect of Heat Treatment on the Oxidation Mechanism of Blended Powder Cr3C2-NiCr Coatings, J. Therm. Spray Technol., 2010, 19(1–2), p 119-127

    Article  CAS  Google Scholar 

  35. L. Janka et al., Influence of Heat Treatment on the Abrasive Wear Resistance of a Cr3C2NiCr Coating Deposited by an Ethene-Fuelled HVOF Spray Process, Surf. Coat. Technol., 2016, 291, p 444-451

    Article  CAS  Google Scholar 

  36. S. Matthews, Unpublished Study, University of Auckland, Auckland, 2019

    Google Scholar 

  37. S. Matthews, B. James, and M. Hyland, High Temperature Erosion–oxidation of Cr3C2-NiCr Thermal Spray Coatings under Simulated Turbine Conditions, Corros. Sci., 2013, 70, p 203-211

    Article  CAS  Google Scholar 

  38. Š. Houdková et al., The High-Temperature Wear and Oxidation Behavior of CrC-Based HVOF Coatings, J. Therm. Spray Technol., 2018, 27(1–2), p 179-195

    Article  Google Scholar 

Download references

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thermal Spray for Extreme Environments. J Therm Spray Tech 28, 1339–1345 (2019). https://doi.org/10.1007/s11666-019-00929-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-019-00929-2

Navigation