Skip to main content
Log in

A Study on the Corrosion Inhibition of Fe-Based Amorphous/Nanocrystalline Coating Synthesized by High-Velocity Oxy-Fuel Spraying in an Extreme Environment

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In this work, Fe-based (Fe-Cr-B-P-C) amorphous/nanocrystalline composite coatings were deposited by high-velocity oxy-fuel thermal spray method with varying powder feed rates and their behavior in saline environment was investigated. An SS316L coating with optimized parameters was also prepared for comparison purpose. The microstructural characterization of the composite coatings revealed the presence of embedded nanocrystalline phases in the amorphous matrix. The amorphicity of the coating increased, whereas the porosity content decreased gradually with the increment in feed rate during the spraying process. The combined effect of extent of devitrification and porosity content on the corrosion behavior of the various coatings was analyzed. Potentiodynamic polarization and electrochemical impedance spectroscopy studies revealed that the Fe-based composite coatings exhibited significantly lower corrosion current density and higher polarization resistance than that of the mild steel substrate as well as SS316L coating. The enhanced corrosion resistance of the composite coatings is ascribed to the combined effect of lower porosity content and retained amorphous phase. In addition, the formation of chromium hydroxide along with some of the oxides and hydroxides of iron in the post-corroded coating samples aids in impeding the corrosive solution penetration, thereby increasing the corrosion inhibition efficiency of the composite coatings.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C.A. Schuh, T.C. Hufnagel, and U. Ramamurty, Mechanical Behavior of Amorphous Alloys, Acta Mater., 2007, 55(12), p 4067-4109

    CAS  Google Scholar 

  2. C. Suryanarayana and A. Inoue, Iron-Based Bulk Metallic Glasses, Int. Mater. Rev., 2012, 58(3), p 131-166

    Google Scholar 

  3. A. Inoue and A. Takeuchi, Recent Development and Applications of Bulk Glassy Alloys, Int. J. Appl. Glass Sci., 2010, 1(3), p 273-295

    CAS  Google Scholar 

  4. M.F. Ashby and A.L. Greer, Metallic Glasses as Structural Materials, Scr. Mater., 2006, 54(3), p 321-326

    CAS  Google Scholar 

  5. M. Chen, Mechanical Behavior of Metallic Glasses: Microscopic Understanding of Strength and Ductility, Annu. Rev. Mater. Res., 2008, 38(1), p 445-469

    CAS  Google Scholar 

  6. S.F. Guo, L. Liu, N. Li, and Y. Li, Fe-Based Bulk Metallic Glass Matrix Composite with Large Plasticity, Scr. Mater., 2010, 62(6), p 329-332

    CAS  Google Scholar 

  7. W. Yang, H. Liu, Y. Zhao, A. Inoue, K. Jiang, J. Huo, H. Ling, Q. Li, and B. Shen, Mechanical Properties and Structural Features of Novel Fe-Based Bulk Metallic Glasses with Unprecedented Plasticity, Sci. Rep., 2014, 4, p 1-6

    CAS  Google Scholar 

  8. X.J. Gu, S.J. Poon, and G.J. Shiflet, Mechanical Properties of Iron-Based Bulk Metallic Glasses, J. Mater. Res., 2007, 22(2), p 344-351

    CAS  Google Scholar 

  9. W. Guo, Y. Wu, J. Zhang, S. Hong, G. Li, G. Ying, J. Guo, and Y. Qin, Fabrication and Characterization of Thermal-Sprayed Fe-Based Amorphous/Nanocrystalline Composite Coatings: An Overview, J. Therm. Spray Technol., 2014, 23(7), p 1157-1180

    CAS  Google Scholar 

  10. V. Varadaraajan, R.K. Guduru, and P.S. Mohanty, Synthesis and Microstructural Evolution of Amorphous/Nanocrystalline Steel Coatings by Different Thermal-Spray Processes, J. Therm. Spray Technol., 2013, 22(4), p 452-462

    CAS  Google Scholar 

  11. Z. Zhou, L. Wang, F.C. Wang, H.F. Zhang, Y.B. Liu, and S.H. Xu, Formation and Corrosion Behavior of Fe-Based Amorphous Metallic Coatings by HVOF Thermal Spraying, Surf. Coat. Technol., 2009, 204(5), p 563-570

    CAS  Google Scholar 

  12. G.Y. Koga, R. Schulz, S. Savoie, A.R.C. Nascimento, Y. Drolet, C. Bolfarini, C.S. Kiminami, and W.J. Botta, Microstructure and Wear Behavior of Fe-Based Amorphous HVOF Coatings Produced from Commercial Precursors, Surf. Coat. Technol., 2017, 309, p 938-944

    CAS  Google Scholar 

  13. J.H. Kim and M.H. Lee, A Study on Cavitation Erosion and Corrosion Behavior of Al-, Zn-, Cu-, and Fe-Based Coatings Prepared by Arc Spraying, J. Therm. Spray Technol., 2010, 19(6), p 1224-1230

    CAS  Google Scholar 

  14. A. Kumar, R. Kumar, P. Bijalwan, M. Dutta, A. Banerjee, and T. Laha, Fe-Based Amorphous/Nanocrystalline Composite Coating by Plasma Spraying: Effect of Heat Input on Morphology, Phase Evolution and Mechanical Properties, J. Alloys Compd., 2019, 771, p 827-837

    CAS  Google Scholar 

  15. J. Kwon, H. Park, I. Lee, and C. Lee, Effect of Gas Flow Rate on Deposition Behavior of Fe-Based Amorphous Alloys in Vacuum Kinetic Spray Process, Surf. Coat. Technol., 2014, 259, p 585-593

    CAS  Google Scholar 

  16. B. Movahedi, M.H. Enayati, and C.C. Wong, Structural and Thermal Behavior of Fe-Cr-Mo-P-B-C-Si Amorphous and Nanocrystalline HVOF Coatings, J. Therm. Spray Technol., 2010, 19(5), p 1093-1099

    CAS  Google Scholar 

  17. N. Mahata, A. Banerjee, P. Bijalwan, P.K. Rai, S. Sangal, and K. Mondal, Electrochemical Behavior of HVOF-Sprayed Amorphous and Nanocrystalline Fe-Based Fe73.13Si11.12B10.79Cr2.24C2.72 Composite Coatings, J. Mater. Eng. Perform., 2017, 26(11), p 5538-5552

    CAS  Google Scholar 

  18. M.P. Planche, H. Liao, B. Normand, and C. Coddet, Relationships Between NiCrBSi Particle Characteristics and Corresponding Coating Properties Using Different Thermal Spraying Processes, Surf. Coat. Technol., 2005, 200(7), p 2465-2473

    CAS  Google Scholar 

  19. S. Sampath, X.Y. Jiang, J. Matejicek, J. Matejicek, L. Prchlik, A. Kulkarni, and A. Vaidya, Role of Thermal Spray Processing Method on the Microstructure, Residual Stress and Properties of Coatings: An Integrated Study of Ni-5 wt.% Al Bond Coats, Mater. Sci. Eng., A, 2004, 364(1-2), p 216-231

    Google Scholar 

  20. H.J. Kim, K.M. Lim, B.G. Seong, and C.G. Park, Amorphous Phase Formation of Zr-Based Alloy Coating by HVOF Spraying Process, J. Mater. Sci., 2001, 36(1), p 49-54

    CAS  Google Scholar 

  21. Y. Yang, C. Zhang, Y. Peng, Y. Yu, and L. Liu, Effects of Crystallization on the Corrosion Resistance of Fe-Based Amorphous Coatings, Corros. Sci., 2012, 59, p 10-19

    CAS  Google Scholar 

  22. C. Zhang, R.Q. Guo, Y. Yang, Y. Wu, and L. Liu, Influence of the Size of Spraying Powders on the Microstructure and Corrosion Resistance of Fe-Based Amorphous Coating, Electrochim. Acta, 2011, 56(18), p 6380-6388

    CAS  Google Scholar 

  23. X.Q. Liu, Y.G. Zheng, X.C. Chang, W.L. Hou, and J.Q. Wang, Influence of HVOF Thermal Spray Process on the Microstructures and Properties of Fe-Based Amorphous/Nano Metallic Coatings, Mater. Sci. Forum, 2009, 633-634, p 685-694

    Google Scholar 

  24. M.S. Bakare, K.T. Voisey, K. Chokethawai, and D.G. McCartney, Corrosion Behaviour of Crystalline and Amorphous Forms of the Glass Forming Alloy Fe43Cr16Mo16C15B10, J. Alloys Compd., 2012, 527, p 210-218

    CAS  Google Scholar 

  25. J. Li, L. Yang, H. Ma, K. Jiang, C. Chang, J.Q. Wang, Z. Song, X. Wang, and R.W. Li, Improved Corrosion Resistance of Novel Fe-Based Amorphous Alloys, Mater. Des., 2016, 95, p 225-230

    CAS  Google Scholar 

  26. M. Taheri, Z. Valefi, and K. Zangeneh-Madar, Influence of HVOF Process Parameters on Microstructure and Bond Strength of NiCrAlY Coatings, Surf. Eng., 2012, 28(4), p 266-272

    CAS  Google Scholar 

  27. B. Hausnerova, B.N. Mukund, and D. Sanetrnik, Rheological Properties of Gas and Water Atomized 17-4PH Stainless Steel MIM Feedstocks: Effect of Powder Shape and Size, Powder Technol., 2017, 312, p 152-158

    CAS  Google Scholar 

  28. M. Li and P.D. Christofides, Modeling and Control of High-Velocity Oxygen-Fuel (HVOF) Thermal Spray: A Tutorial Review, J. Therm. Spray Technol., 2009, 18(5-6), p 753-768

    CAS  Google Scholar 

  29. D. Zois, A. Lekatou, M. Vardavoulias, T. Vaimakis, and A.E. Karantzalis, Partially Amorphous Stainless Steel Coatings: Microstructure, Annealing Behavior and Statistical Optimization of Spray Parameters, Surf. Coat. Technol., 2011, 206(6), p 1469-1483

    CAS  Google Scholar 

  30. P. Bansal, P.H. Shipway, and S.B. Leen, Residual Stresses in High-Velocity Oxy-Fuel Thermally Sprayed Coatings—Modelling the Effect of Particle Velocity and Temperature during the Spraying Process, Acta Mater., 2007, 55(15), p 5089-5101

    CAS  Google Scholar 

  31. L. Qiao, Y. Wu, S. Hong, J. Cheng, and Z. Wei, Influence of the High-Velocity Oxygen-Fuel Spray Parameters on the Porosity and Corrosion Resistance of Iron-Based Amorphous Coatings, Surf. Coat. Technol., 2019, 366(March), p 296-302

    CAS  Google Scholar 

  32. Y. Wang, S.L. Jiang, Y.G. Zheng, W. Ke, W.H. Sun, X.C. Chang, W.L. Hou, and J.Q. Wang, Effect of Processing Parameters on the Microstructures and Corrosion Behaviour of High-Velocity Oxy-Fuel (HVOF) Sprayed Fe-Based Amorphous Metallic Coatings, Mater. Corros., 2013, 64(9), p 801-810

    CAS  Google Scholar 

  33. J. Wu, S.D. Zhang, W.H. Sun, Y. Gao, and J.Q. Wang, Enhanced Corrosion Resistance in Fe-Based Amorphous Coatings through Eliminating Cr-Depleted Zones, Corros. Sci., 2018, 136, p 161-173

    CAS  Google Scholar 

  34. R.S. Maurya, A. Sahu, and T. Laha, Quantitative Phase Analysis in Al86Ni8Y6 Bulk Glassy Alloy Synthesized by Consolidating Mechanically Alloyed Amorphous Powder via Spark Plasma Sintering, Mater. Des., 2016, 93, p 96-103

    CAS  Google Scholar 

  35. S.D. Zhang, J. Wu, W.B. Qi, and J.Q. Wang, Effect of Porosity Defects on the Long-Term Corrosion Behaviour of Fe-Based Amorphous Alloy Coated Mild Steel, Corros. Sci., 2016, 110, p 57-70

    Google Scholar 

  36. K. Mondal, B.S. Murty, and U.K. Chatterjee, Electrochemical Behavior of Multicomponent Amorphous and Nanocrystalline Zr-Based Alloys in Different Environments, Corros. Sci., 2006, 48(8), p 2212-2225

    CAS  Google Scholar 

  37. C. Zhang, K.C. Chan, Y. Wu, and L. Liu, Pitting Initiation in Fe-Based Amorphous Coatings, Acta Mater., 2012, 60(10), p 4152-4159

    CAS  Google Scholar 

  38. K.R. Sriraman, S. Brahimi, J.A. Szpunar, J.H. Osborne, and S. Yue, Characterization of Corrosion Resistance of Electrodeposited Zn-Ni Zn and Cd Coatings, Electrochim. Acta, 2013, 105, p 314-323

    CAS  Google Scholar 

  39. C. Sun, J. Li, S. Shuang, H. Zeng, and J.L. Luo, Effect of Defect on Corrosion Behavior of Electroless Ni-P Coating in CO2-Saturated NaCl Solution, Corros. Sci., 2018, 134, p 23-37

    CAS  Google Scholar 

  40. J. Wu, S.D. Zhang, W.H. Sun, and J.Q. Wang, Influence of Oxidation Related Structural Defects on Localized Corrosion in HVAF-Sprayed Fe-Based Metallic Coatings, Surf. Coat. Technol., 2018, 335, p 205-218

    CAS  Google Scholar 

  41. D. de la Fuente, J. Alcántara, B. Chico, I. Díaz, J.A. Jiménez, and M. Morcillo, Characterisation of Rust Surfaces Formed on Mild Steel Exposed to Marine Atmospheres Using XRD and SEM/Micro-Raman Techniques, Corros. Sci., 2016, 110, p 253-264

    Google Scholar 

  42. K.F. McCarty and D.R. Boehme, A Raman Study of the Systems Fe3−xCrxO4 and Fe2−xCrxO3, J. Solid State Chem., 1989, 79(1), p 19-27

    CAS  Google Scholar 

  43. Y. Ma, Y. Li, and F. Wang, Corrosion of Low Carbon Steel in Atmospheric Environments of Different Chloride Content, Corros. Sci., 2009, 51(5), p 997-1006

    CAS  Google Scholar 

  44. A. Mazarío-Fernández, I. Llorente, I. Díaz, A. Gómez-Herrero, M. Morcillo, B. Chico, D. de la Fuente, J.A. Jiménez, J.M. González-Calbet, and J. Alcántara, Environmental Conditions for Akaganeite Formation in Marine Atmosphere Mild Steel Corrosion Products and Its Characterization, Corrosion, 2015, 71(7), p 872-886

    Google Scholar 

Download references

Acknowledgments

The author, T. Laha, thankfully acknowledges the financial support obtained from Research and Development Division of Tata Steel, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sapan K. Nayak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayak, S.K., Kumar, A., Sarkar, K. et al. A Study on the Corrosion Inhibition of Fe-Based Amorphous/Nanocrystalline Coating Synthesized by High-Velocity Oxy-Fuel Spraying in an Extreme Environment. J Therm Spray Tech 28, 1433–1447 (2019). https://doi.org/10.1007/s11666-019-00907-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-019-00907-8

Keywords

Navigation