Skip to main content
Log in

Plasma Spraying of Dense Ceramic Coating with Fully Bonded Lamellae Through Materials Design Based on the Critical Bonding Temperature Concept

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

It is usually difficult to deposit a dense ceramic coating with fully bonded splats by plasma spraying at a room temperature. Following the recent research progress on the splat interface bonding formation, it was found that there is a well-defined relationship between the critical bonding temperature and the melting point of spray material. Thus, it can be proposed to control the lamellar bonding through the deposition temperature. In this study, to examine the feasibility of the bonding formation theory, a novel approach to the development of ceramic coating with dense microstructure by plasma spraying through materials design with a low melting point is proposed. Potassium titanate K2Ti6O13 was selected as a typical ceramic material of a relatively low melting point for plasma spraying deposition of dense coating with well-bonded splats. Experiment was conducted by using K2Ti6O13 for both splat and coating deposition. Results show that the splat is fully bonded with a ceramic substrate at room temperature, and the K2Ti6O13 coating presents a dense microstructure and a fracture surface morphology similar to sintered bulk ceramic, revealing excellent interlamellar bonding formation. Moreover, both the hardness test and erosion test at 90° further confirmed the formation of the isotropic ceramic coating with fully bonded lamellae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Vardelle, C. Moreau, J. Akedo et al., The 2016 Thermal Spray Roadmap, J. Therm. Spray Technol., 2016, 25(8), p 1376-1440

    Article  Google Scholar 

  2. A. McWilliams, High-Performance Ceramic Coatings: Markets and Technologies, BBC Research, 2016

  3. J.R. Davis, Handbook of Thermal Spray Technology, ASM International, Materials Park, 2004

    Google Scholar 

  4. L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, Wiley, Chichester, 1995

    Google Scholar 

  5. C.-J. Li and A. Ohmori, Relationship Between the Structure and Properties of Thermally Sprayed Deposits, J. Therm. Spray Technol., 2002, 11, p 365-374

    Article  Google Scholar 

  6. R. McPherson and B.V. Shafer, Interlamellar Contact Within Plasma-Sprayed Coatings, Thin Solid Films, 1982, 97, p 201-204

    Article  Google Scholar 

  7. A. Ohmori and C.-J. Li, Quantitative Characterization of the Structure of Plasma Sprayed Al2O3 Coating by Using Copper Electroplating, Thin Solid Films, 1991, 201, p 241-252

    Article  Google Scholar 

  8. S. Kuroda, T. Dendo, and S. Kitahara, Quenching Stress in Plasma Sprayed Coatings and Its Correlation with the Deposit Microstructure, J. Therm. Spray Technol., 1995, 4(1), p 75-84

    Article  Google Scholar 

  9. S. Boire-Lavigne, C. Moreau, and R.G. Saint-Jacques, The Relationship Between the Microstructure and Thermal Diffusivity of Plasma-Sprayed Tungsten Coatings, J. Therm. Spray Technol., 1995, 4(3), p 261-267

    Article  Google Scholar 

  10. L. Chen, G.J. Yang, C.-X. Li, and C.-J. Li, Edge Effect on Crack Patterns in Thermally Sprayed Ceramic Splats, J. Therm. Spray Technol., 2017, 26(3), p 302-314

    Article  Google Scholar 

  11. S. Kuroda and T.W. Clyne, The Quenching Stress in Thermally Sprayed Coating, Thin Solid Films, 1991, 200, p 49-66

    Article  Google Scholar 

  12. Y. Arata, A. Ohmori, and C.-J. Li, Electrochemical Method to Evaluate the Connected Porosity in Ceramic Coatings, Thin Solid Films, 1988, 156, p 315-325

    Article  Google Scholar 

  13. M. Vippola, J. Vuorinen, P. Vuoristo, T. Lepisto, and T. Mantyla, Thermal Analysis of Plasma Sprayed Oxide Coatings Sealed with Aluminium Phosphate, J. Eur. Ceram. Soc., 2002, 22, p 1937-1946

    Article  Google Scholar 

  14. C.-J. Li, X.-J. Ning, and C.-X. Li, Effect of Densification Process on the Properties of Plasma-Sprayed YSZ Electrolyte Coatings for Solid Oxide Fuel Cell, Surf. Coat. Technol., 2005, 190, p 60-64

    Article  Google Scholar 

  15. R. McPherson, A Model for the Thermal Conductivity of Plasma-Sprayed Ceramic Coatings, Thin Solid Films, 1984, 112, p 89-95

    Article  Google Scholar 

  16. C.-J. Li, W.-Z. Wang, and Y. He, Dependency of Fracture Toughness of Plasma-Spray Al2O3 Coatings on Lamellar Structure, J. Therm. Spray Technol., 2004, 13(3), p 425-443

    Article  Google Scholar 

  17. C.-J. Li, G.J. Yang, and C.X. Li, Development of Particle Interface Bonding in Thermal Spray Coatings: A Review, J. Therm. Spray Technol., 2013, 22(2-3), p 192-206

    Article  Google Scholar 

  18. G. Dwivedi, V. Viswanathan, S. Sampath, A. Shyam, and E. Lara-Curzio, Fracture Toughness of Plasma-Sprayed Thermal Barrier Ceramics: Influence of Processing, Microstructure, and Thermal Aging, J. Am. Ceram. Soc., 2014, 97(9), p 2736-2744

    Article  Google Scholar 

  19. C.-J. Li, Y. Li, G.-J. Yang, and C.-X. Li, A Novel Plasma-Sprayed Durable Thermal Barrier Coating with the Well-Bonded YSZ Interlayer Between Porous YSZ and Bond Coat, J. Therm. Spray Technol., 2012, 21, p 383-390

    Article  Google Scholar 

  20. V. Viswanathan, G. Dwivedi, and S. Sampath, Engineered Multilayer Thermal Barrier Coatings for Enhanced Durability and Functional Performance, J. Am. Ceram. Soc., 2014, 97(9), p 2770-2778

    Article  Google Scholar 

  21. G. Dwivedi, K. Flynn, M. Resnick, S. Sampath, and A. Gouldstone, Bioinspired Hybrid Materials from Spray-Formed Ceramic Templates, Adv. Mater., 2015, 27(19), p 3073-3078

    Article  Google Scholar 

  22. J. Rong, K. Yang, Y. Zhuang, J. Ni, H. Zhao, S. Tao, X. Zhong, and C. Ding, Phase and Microstructure Evolution and Toughening Mechanism of a Hierarchical Architectured Al2O3-Y2O3 Coating Under High Temperature, J. Therm. Spray Technnol., 2018, 27, p 358-370

    Article  Google Scholar 

  23. Y.-Z. Xing, C.-J. Li, C.-X. Li, and G.-J. Yang, Relationship Between the Interlamellar Bonding and Properties of Plasma-Sprayed Y2O3-ZrO2 Coatings, Thermal Spray 2009: Expanding Thermal Spray Performance to New Markets and Applications, B.R. Marple, M.M. Hyland, Y.-C. Lau, C.-J. Li, R.S. Lima, and G. Montavon, Ed., ASM International, Materials Park, 2009, p 939-944

    Google Scholar 

  24. H.B. Guo, R. Vaßen, and D. Stöver, Atmospheric Plasma Sprayed Thick Thermal Barrier Coatings with High Segmentation Crack Density, Surf. Coat. Technol., 2004, 186, p 353-363

    Article  Google Scholar 

  25. Y.Z. Xing, C.J. Li, Q. Zhang, C.X. Li, and G.J. Yang, Influence of Microstructure on the Ionic Conductivity of Plasma-Sprayed Yttria-Stabilized Zirconia Deposits, J. Am. Ceram. Soc., 2008, 91(12), p 3931-3936

    Article  Google Scholar 

  26. G.J. Yang, C.X. Li, S. Hao, Y.Z. Xing, Y.Z. Xing, and C.-J. Li, Critical Bonding Temperature for the Splat Bonding Formation During Plasma Spraying of Ceramic Materials, Surf. Coat. Technol., 2013, 235, p 841-847

    Article  Google Scholar 

  27. S.W. Yao, C.-J. Li, J.J. Tian, G.J. Yang, and C.X. Li, Conditions and Mechanisms for the Bonding of a Molten Ceramic Droplet to a Substrate After High-Speed Impact, Acta Mater., 2016, 119, p 9-25

    Article  Google Scholar 

  28. R. Murakami and K. Matsui, Evaluation of Mechanical and Wear Properties of Potassium Acid Titanate Whisker-Reinforced Copper Matrix Composites Formed by Hot Isostatic Pressing, Wear, 1996, 201, p 193-198

    Article  Google Scholar 

  29. D. Yu, J. Wu, L. Zhou, D. Xie, and S. Wu, The Dielectric and Mechanical Properties of a Potassium-Titanate-Whisker-Reinforced PP/PA Blend, Compos. Sci. Technol., 2000, 60, p 499-508

    Article  Google Scholar 

  30. Z. Lu, Y. Liu, B. Liu, and M. Liu, Friction and Wear Behavior of Hydroxyapatite Based Composite Ceramics Reinforced with Fibers, Mater. Des., 2012, 39, p 444-449

    Article  Google Scholar 

  31. Y. Qi, Y. He, C. Cui, S. Liu, and H. Wang, Fabrication and Biocompatibility In Vitro of Potassium Titatnate Biological Thin/Titanium Alloy Biological Composite, Front. Mater. Sci., 2007, 1, p 252-257

    Article  Google Scholar 

  32. H. Yoshida, M. Takeuchi, M. Sato, L. Zhang, T. Teshima, and M.G. Chaskar, Possium Hexatitanate Photocatalysts Prepared by Flux Method for Water Splitting, Catal. Today, 2014, 232, p 158-164

    Article  Google Scholar 

  33. A.S. Varezhnikov, F.S. Fedorov, I.N. Burmistrov, I.A. Plugin, M. Sommer, A.V. Lashkov, A.V. Gorokhovsky, A.G. Nasibulin, D.V. Kuznetsov, M.V. Gorshenkov, and V.V. Sysoev, The Room-Temperature Chemiresistive Properties of Potassium Titanate Whiskers Versus Organic Vapor, Nanomaterials, 2017, 7, p 455-465

    Article  Google Scholar 

  34. R. Dominiko, L. Dupond, M. Gabersaek, J. Jamnik, and E. Baudrin, Alkali Hexatitanate-A2Ti6O13 (A = Na, K) as Host Structure for Reversible Lithium Insertion, J. Power Sources, 2007, 174, p 1172-1176

    Article  Google Scholar 

  35. X. Cheng, Q. Dong, Z. Li, X. Guo, and W. Duan, Influence of Potassium Titanate Whisker on the Mechanical Properties and Microstructure of Calcium Aluminate Cement for In Situ Combustion, J. Adhes. Sci. Technol., 2018, 32, p 343-358

    Article  Google Scholar 

  36. C.J. Li and J.L. Li, Evaporated-Gas-Induced Splashing Model for Splat Formation during Plasma Spraying, Surf. Coat. Technol., 2004, 184(1), p 13-23

    Article  Google Scholar 

  37. S.W. Yao, G.J. Yang, C.X. Li, and C.J. Li, Improving Erosion Resistance of Plasma-Sprayed Ceramic Coatings by Elevating the Deposition Temperature Based on the Critical Bonding Temperature, J. Therm. Spray Technol., 2018, 27(1-2), p 25-34

    Article  Google Scholar 

  38. P. Ponce-Pena, M.A. Gozalez-Lozano, M.A. Escobedo-Bretado, P. de Lira-Gomez, E. Garcia-Sanchez, E. Rivera, and L. Alexandrova, Synthesis and characterization of Potassium Hexatitanate Using Boric Acid as the Flux, Ceram. Int., 2015, 41, p 10051-10056

    Article  Google Scholar 

  39. L.S. Wang, S.L. Zhang, T. Liu, C.J. Li, C.X. Li, and G.J. Yang, Dominant Effect of Particle Size on the CeO2 Preferential Evaporation During Plasma Spraying of La2Ce2O7, J. Eur. Ceram. Soc., 2017, 37(4), p 1577-1585

    Article  Google Scholar 

  40. S. Zhang, T. Liu, C. Li, S. Yao, and C. Li, Atmospheric Plasma-Sprayed La0.8Sr0.2Ga0.8Mg0.2O3 Electrolyte Membranes for Intermediate-Temperature Solid Oxide Fuel Cells, J. Mater. Chem. A, 2015, 3(14), p 7535-7553

    Article  Google Scholar 

  41. S.H. Leigh, C.K. Lin, and C.C. Berndt, Elastic Response of Thermal Spray Deposits Under Indentation Tests, J. Am. Ceram. Soc., 1997, 80, p 2093-2099

    Article  Google Scholar 

  42. F. Kroupa, Nonlinear Behavior in Compression and Tension of Thermally Sprayed Ceramic Coatings, J. Therm. Spray Technol., 2007, 16(1), p 84-95

    Article  Google Scholar 

  43. G.-R. Li, H. Xie, G.-J. Yang, G. Liu, C.-X. Li, and C.-J. Li, A Comprehensive Sintering Mechanism for TBCs-Part I: An Overall Evolution with Two-Stage Kinetics, J. Am. Ceram. Soc., 2017, 100(5), p 2176-2189

    Article  Google Scholar 

  44. C.-J. Li, G.-J. Yang, and A. Ohmori, Relationship Between Particle Erosion and Lamellar Microstructure for Plasma Sprayed Alumina Coatings, Wear, 2006, 260(11-12), p 1166-1172

    Article  Google Scholar 

  45. A. Kobayashi, Enhancement of Functional Ceramic Coating Performance by Gas Tunnel Type Plasma Spraying, J. Therm. Spray Technol., 2016, 25(3), p 411-418

    Article  Google Scholar 

  46. R.J. Damani and P. Makroczy, Heat Treatment Induced Phase and Microstructural Development in Bulk Plasma Sprayed Alumina, J. Eur. Ceram. Soc., 2000, 20(7), p 867-888

    Article  Google Scholar 

  47. T. Chraska, Z. Pala, R. Musalek, J. Medricky, and M. Vilemova, Post-Treatment of Plasma-Sprayed Amorphous Ceramic Coatings by Spark Plasma Sintering, J. Therm. Spray Technol., 2015, 24(4), p 637-643

    Article  Google Scholar 

  48. A. Ohmori, C.-J. Li, and Y. Arata, Influence of Plasma Spray Conditions on the Structure of Al2O3 Coatings, Trans. Jpn. Weld. Res. Inst., 1990, 19, p 259-270

    Google Scholar 

  49. M. Vardelle, A. Vardelle, and P. Fauchais, Study of Trajectories and Temperatures of Powders in a D.C. Plasma Jet—Correlation with Alumina Sprayed Coatings. Proceedings of the 10th International Thermal Spraying Conference, Essen, May 1983, German Welding Society, 1983, p 88-92

  50. L.-M. Martinez and C. Angell, A Thermodynamic Connection to the Fragility of Glass-Forming Liquids, Nature, 2001, 410, p 663-667

    Article  Google Scholar 

Download references

Acknowledgments

The present project is financially supported by National Science Foundation (No. 51171144) and the National Basic Research Program of China (No. 2012CB625104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Jiu Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, CJ., Zhang, QL., Yao, SW. et al. Plasma Spraying of Dense Ceramic Coating with Fully Bonded Lamellae Through Materials Design Based on the Critical Bonding Temperature Concept. J Therm Spray Tech 28, 53–62 (2019). https://doi.org/10.1007/s11666-018-0818-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-018-0818-8

Keywords

Navigation