Skip to main content
Log in

Understanding the Formation of Limited Interlamellar Bonding in Plasma Sprayed Ceramic Coatings Based on the Concept of Intrinsic Bonding Temperature

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Interlamellar bonding is an important factor controlling the mechanical, thermal and electrical properties of plasma sprayed ceramic coatings. In order to understand the formation of limited interlamellar bonding, a theoretical model is proposed based on the concept of the intrinsic bonding temperature. The numerical simulation of the interface temperature between a molten splat and underlying splats was performed for splats with uniform and non-uniform thickness, in order to reveal the conditions for the interlamellar bonding formation. The interlamellar bonding ratio was theoretically estimated based on the bonding forming conditions. The features of interlamellar bonding revealed by the simulation agree well with the experimental observations. The bonding ratio of plasma sprayed coatings is significantly influenced by the distribution of splat thickness. According to the distribution of Al2O3 splat thickness in the coating, the theoretical estimation of bonding ratio yielded a value of 0.41 for the plasma sprayed Al2O3 coating at the ambient atmosphere conditions, which is reasonably consistent with the observation value. Therefore, the limited interlamellar bonding can be reasonably explained based on the sufficient condition that the maximum interface temperature between a molten splat and underlying splats is larger than the intrinsic bonding temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. C.-J. Li and A. Ohmori, Relationships Between the Microstructure and Properties of Thermally Sprayed Deposits, J. Therm. Spray Technol., 2002, 11(3), p 365-374

    Article  Google Scholar 

  2. A. Ohmori and C.-J. Li, Quantitative Characterization of the Structure of Plasma-Sprayed Al2O3 Coating by Using Copper Electroplating, Thin Solid Films, 1991, 201(2), p 241-252

    Article  Google Scholar 

  3. C.-J. Li, G.J. Yang, and C.X. Li, Development of Particle Interface Bonding in Thermal Spray Coatings: A Review, J. Therm. Spray Technol., 2013, 22(2–3), p 192-206

    Article  Google Scholar 

  4. R. McPherson and B. Shafer, Interlamellar Contact within Plasma-Sprayed Coatings, Thin Solid Films, 1982, 97(3), p 201-204

    Article  Google Scholar 

  5. C. Moreau, P. Cielo, M. Lamontagne, S. Dallaire, J.C. Krapez, and M. Vardelle, Temperature Evolution of Plasma-Sprayed Niobium Particles Impacting on a Substrate, Surf. Coat. Technol., 1991, 46(2), p 173-187

    Article  Google Scholar 

  6. T. Chraska and A.H. King, Transmission Electron Microscopy Study of Rapid Solidification of Plasma Sprayed Zirconia—Part I. First Splat Solidification, Thin Solid Films, 2001, 397(1), p 30-39

    Article  Google Scholar 

  7. Y. Arata, A. Ohmori, and C.-J. Li, Study on the Structure of Plasma Sprayed Ceramic Coating by Using Copper Electroplating, in Proceedings of International Symposium on Advanced Thermal Spray Technology and Allied Coatings, 1988, p 205-210

  8. S. Kuroda and T. Clyne, The Quenching Stress in Thermally Sprayed Coatings, Thin Solid Films, 1991, 200(1), p 49-66

    Article  Google Scholar 

  9. C.-J. Li, A. Ohmori, and R. McPherson, The Relationship Between Microstructure and Young’s Modulus of Thermally Sprayed Ceramic Coatings, J. Mater. Sci., 1997, 32(4), p 997-1004

    Article  Google Scholar 

  10. C.-J. Li, W.Z. Wang, and Y. He, Dependency of Fracture Toughness of Plasma Sprayed Al2O3 Coatings on Lamellar Structure, J. Therm. Spray Technol., 2004, 13(3), p 425-431

    Article  Google Scholar 

  11. R. McPherson, A Model for the Thermal Conductivity of Plasma-Sprayed Ceramic Coatings, Thin Solid Films, 1984, 112(1), p 89-95

    Article  Google Scholar 

  12. S. Boire-Lavigne, C. Moreau, and R. Saint-Jacques, The Relationship Between the Microstructure and Thermal Diffusivity of Plasma-Sprayed Tungsten Coatings, J. Therm. Spray Technol., 1995, 4(3), p 261-267

    Article  Google Scholar 

  13. C.-J. Li, C.X. Li, and M. Wang, Effect of Spray Parameters on the Electrical Conductivity of Plasma-Sprayed La1−xSrxMnO3 Coating for the Cathode of SOFCs, Surf. Coat. Technol., 2005, 198(1), p 278-282

    Article  Google Scholar 

  14. Y.Z. Xing, C.-J. Li, C.X. Li, and G.J. Yang, Influence of Through-Lamella Grain Growth on Ionic Conductivity of Plasma-Sprayed Yttria-Stabilized Zirconia as an Electrolyte in Solid Oxide Fuel Cells, J. Power Sources, 2008, 176(1), p 31-38

    Article  Google Scholar 

  15. L. Pawlowski, The science and engineering of thermal spray coatings, Wiley, London, 2008

    Book  Google Scholar 

  16. J.R. Davis, Handbook of Thermal Spray Technology, ASM International, 2004

  17. X. Shi, M. Shu, Q. Zhong, J. Zhang, Q. Zhou, and B. Quoc, Binh, Investigations of Local Corrosion Behavior of Plasma-Sprayed FeCr Nanocomposite Coating by SECM, J. Therm. Spray Technol., 2016, 25(3), p 595-604

    Article  Google Scholar 

  18. A. Ganvir, N. Curry, N. Markocsan, P. Nylen, S. Joshi, M. Vilemova, and Z. Pala, Influence of Microstructure on Thermal Properties of Axial Suspension Plasma-Sprayed YSZ Thermal Barrier Coatings, J. Therm. Spray Technol., 2016, 25(1–2), p 202-212

    Article  Google Scholar 

  19. Y. Zhang, M. Hyland, T. Anh Tuyet, and S. Matthews, Effect of Substrates Temperatures on the Spreading Behavior Of Plasma-Sprayed Ni and Ni-20 wt.% Cr Splats, J. Therm. Spray Technol., 2016, 25(1–2), p 71-81

    Article  Google Scholar 

  20. A. Kobayashi, Enhancement of Functional Ceramic Coating Performance by Gas Tunnel Type Plasma Spraying, J. Therm. Spray Technol., 2016, 25(3), p 411-418

    Article  Google Scholar 

  21. Q. Wei, J. Zhu, and W. Chen, Anisotropic Mechanical Properties of Plasma-Sprayed Thermal Barrier Coatings at High Temperature Determined by Ultrasonic Method, J. Therm. Spray Technol., 2016, 25(3), p 605-612

    Article  Google Scholar 

  22. A. McWilliams, High-Performance Ceramic Coatings: Markets and Technologies, BCC Res., 2016, 1

  23. A. Afrasiabi and A. Kobayashi, Hot Corrosion Control in Plasma Sprayed YSZ Coating by Alumina Layer with Evaluation of Microstructure and Nanoindentation Data (H, E), Vacuum, 2013, 88, p 103-107

    Article  Google Scholar 

  24. S. Panwar, P.T. Umasankar, K. Balasubramanian, and B. Venkataraman, High-Temperature Stability of Yttria-Stabilized Zirconia Thermal Barrier Coating on Niobium Alloy—C-103, Bull. Mater. Sci., 2016, 39(1), p 321-329

    Article  Google Scholar 

  25. R. Henne, Solid Oxide Fuel Cells: A Challenge for Plasma Deposition Processes, J. Therm. Spray Technol., 2007, 16(3), p 381-403

    Article  Google Scholar 

  26. C.-J. Li, X.J. Ning, and C.X. Li, Effect of Densification Processes on the Properties of Plasma-Sprayed YSZ Electrolyte Coatings for Solid Oxide Fuel Cells, Surf. Coat. Technol., 2005, 190(1), p 60-64

    Article  Google Scholar 

  27. A. Vardelle, M. Vardelle, R. McPhereson, Study of the Influence of Particle Temperature and Velocity Distribution within a Plasma Jet Coating Formation, Proceedings of the 9th International Thermal Spraying Conference, DVS German Welding Research Institute, p 155-161

  28. C. Lyphout, P. Nylen, and L.G. Östergren, Adhesion Strength of HVOF Sprayed IN718 Coatings, J. Therm. Spray Technol., 2012, 21(1), p 86-95

    Article  Google Scholar 

  29. C.-J. Li and G.J. Yang, Relationships Between Feedstock Structure, Particle Parameter, Coating Deposition, Microstructure and Properties for Thermally Sprayed Conventional and Nanostructured WC-Co, Int. J. Refract. Met. Hard Mater., 2013, 39, p 2-17

    Article  Google Scholar 

  30. G. Mauer, D. Sebold, and R. Vaßen, MCrAlY Bondcoats by High-Velocity Atmospheric Plasma Spraying, J. Therm. Spray Technol., 2014, 23(1–2), p 140-146

    Article  Google Scholar 

  31. C. Henkes and H. Olivier, Particle Acceleration in a High Enthalpy Nozzle Flow with a Modified Detonation Gun, J. Therm. Spray Technol., 2014, 23(4), p 625-640

    Article  Google Scholar 

  32. A. Ohmori, C.-J. Li, and Y. Arata, Influence of Plasma Spray Conditions on the Structure of Al2O3 Coatings, Trans. Jpn. Weld. Res. Inst., 1990, 19, p 259-270

    Google Scholar 

  33. C.-J. Li and A. Ohmori, The Lamellar Structure of a Detonation Gun Sprayed Al2O3 Coating, Surf. Coat. Technol., 1996, 82(3), p 254-258

    Article  Google Scholar 

  34. R. Kawase, H. Nakajima, K. Maehara, M. Koyama, and H. Abe, Influence of spraying parameters on detonation coating properties, Proceedings of International Symposium on Advanced Thermal Spraying Technology and Allied Coatings, Osaka, 1988, p 55-60

  35. P. Fauchais, M. Vardelle, A. Vardelle, and J. Coudert, Plasma Spraying of Ceramic Particles in Argon-Hydrogen dc Plasma Jets: Modeling and Measurements of Particles in Flight Correlation with Thermophysical Properties of Sprayed Layers, Metall. Mater. Trans. B, 1989, 20(2), p 263-276

    Article  Google Scholar 

  36. Y.Z. Xing, C.-J. Li, Q. Zhang, C.X. Li, and G.J. Yang, Influence of Microstructure on the Ionic Conductivity of Plasma-Sprayed Yttria-Stabilized Zirconia Deposits, J. Am. Ceram. Soc., 2008, 91(12), p 3931-3936

    Article  Google Scholar 

  37. S. Hao, C.-J. Li, and G.J. Yang, Influence of Deposition Temperature on the Microstructures and Properties of Plasma-Sprayed Al2O3 Coatings, J. Therm. Spray Technol., 2011, 20(1–2), p 160-169

    Article  Google Scholar 

  38. S. Sampath, X. Jiang, J. Matejicek, A. Leger, and A. Vardelle, Substrate Temperature Effects on Splat Formation, Microstructure Development and Properties of Plasma Sprayed Coatings Part I: Case Study for Partially Stabilized Zirconia, Mater. Sci. Eng., A, 1999, 272(1), p 181-188

    Article  Google Scholar 

  39. T. Chraska and A.H. King, Transmission Electron Microscopy Study of Rapid Solidification of Plasma Sprayed Zirconia–Part II. Interfaces and Subsequent Splat Solidification, Thin Solid Films, 2001, 397(1), p 40-48

    Article  Google Scholar 

  40. G. Heintze and S. Uematsu, Preparation and Structures of Plasma-Sprayed γ-and α-Al2O3 Coatings, Surf. Coat. Technol., 1992, 50(3), p 213-222

    Article  Google Scholar 

  41. I.H. Jung, K.K. Bae, M.S. Yang, and S.K. Ihm, A Study of the Microstructure of Yttria-Stabilized Zirconia Deposited by Inductively Coupled Plasma Spraying, J. Therm. Spray Technol., 2000, 9(4), p 463-477

    Article  Google Scholar 

  42. I.H. Jung, J.S. Moon, K.C. Song, and M.S. Yang, Microstructure of Yttria Stabilized Zirconia Deposited by Plasma Spraying, Surf. Coat. Technol., 2004, 180, p 454-457

    Article  Google Scholar 

  43. V. Pershin, M. Lufitha, S. Chandra, and J. Mostaghimi, Effect of Substrate Temperature on Adhesion Strength of Plasma-Sprayed Nickel Coatings, J. Therm. Spray Technol., 2003, 12(3), p 370-376

    Article  Google Scholar 

  44. G.J. Yang, C.X. Li, S. Hao, Y.Z. Xing, E.J. Yang, and C.-J. Li, Critical Bonding Temperature for the Splat Bonding Formation During Plasma Spraying of Ceramic Materials, Surf. Coat. Technol., 2013, 235, p 841-847

    Article  Google Scholar 

  45. S.W. Yao, C.-J. Li, J.J. Tian, G.J. Yang, and C.X. Li, Conditions and Mechanisms for the Bonding of a Molten Ceramic Droplet to a Substrate After High-Speed Impact, Acta Mater., 2016, 119, p 9-25

    Article  Google Scholar 

  46. R. McPherson, The Relationship Between the Mechanism of Formation, Microstructure and Properties of Plasma-Sprayed Coatings, Thin Solid Films, 1981, 83(3), p 297-310

    Article  Google Scholar 

  47. V. Sobolev and J. Guilemany, Droplet-Substrate Impact Interaction in Thermal Spraying, Mater. Lett., 1996, 28(4), p 331-335

    Article  Google Scholar 

  48. J.M. Houben, Remarks Concerning a Rational Plasma for Thermal Spraying, Preprints of 9th International Thermal Spray Conference, 1980, p 143-154

  49. C.-J. Li and W.Z. Wang, Quantitative Characterization of Lamellar Microstructure of Plasma-Sprayed Ceramic Coatings Through Visualization of Void Distribution, Mater. Sci. Eng., A, 2004, 386(1), p 10-19

    Google Scholar 

  50. Y. Lahmar-Mebdoua, A. Vardelle, P. Fauchais, and D. Gobin, Modelling the Nucleation Process in Alumina Lamellae Deposited on a Steel Substrate, Int. J. Therm. Sci., 2010, 49(3), p 522-528

    Article  Google Scholar 

  51. E.J. Yang, X.T. Luo, G.J. Yang, C.-J. Li, M. Takahashi, S. Kuroda, and K.H. Kim, Impact of Deposition Temperature on Crystalline Structure of Plasma-Sprayed Al2O3 Splats Revealed by FIB-HRTEM Technique, Ceram. Int., 2016, 42(1), p 853-860

    Article  Google Scholar 

  52. E.J. Yang, C.-J. Li, G.J. Yang, C.X. Li, and M. Takahashi, Effect of Intersplat Interface Bonding on the Microstructure of Plasma-Sprayed Al2O3 Coating, IOP Conf. Ser.: Mater. Sci. Eng., 2014, 61, p 012022. doi:10.1088/1757-899X/61/1/012022

    Article  Google Scholar 

Download references

Acknowledgments

The present project is financially supported by the National Basic Research Program of China (Grant No. 2012CB625100) and National Natural Science Foundation of China (Grant No. 51171144).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Jiu Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, SW., Tian, JJ., Li, CJ. et al. Understanding the Formation of Limited Interlamellar Bonding in Plasma Sprayed Ceramic Coatings Based on the Concept of Intrinsic Bonding Temperature. J Therm Spray Tech 25, 1617–1630 (2016). https://doi.org/10.1007/s11666-016-0464-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-016-0464-y

Keywords

Navigation