Skip to main content
Log in

Parametric Study on Suspension Behavior in an Inductively Coupled Plasma

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Numerical analysis is conducted for the evolution of suspension particles in an inductively coupled plasma (ICP). The mathematical model based on the Lagrangian tracking method incorporates a nanoparticle model into the ICP code. This comprehensive model considers entire physical phenomena of the in-flight particle such as injection, accelerating, solvent evaporation, solid particle discharge, heating, melting, and evaporation. After validating the computational results of the flow field with published experimental data, parametric analysis has been performed to find the way of controlling the operating conditions for desirable final particle status. The influences of injection position, carrier gas velocity, power level, particle initial size on particle size, temperature, and velocity evolution have been in detail discussed. The relationship between the predicted height of droplet complete evaporation and the droplet initial diameter is deduced. Finally, results also calculate the critical size of an ethanol droplet suspended with zirconia particles, which will be completely vaporized under present conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A :

Magnetic vector potential, (A H)/m

C p :

Specific heat, J/(kg K)

C D, c d :

Drag coefficient

D :

Diffusion coefficients, m2/s

E :

Electric field, V/m

e :

Internal energy, J

f :

Frequency, Hz

g :

Gravity force, N

H :

Magnetic field, A/m

h :

Heat-transfer coefficient

J :

Current density, A/m2

Kn :

Knudsen number

L m :

Latent heat of fusion, J/kg

L v :

Latent heat of evaporation, J/kg

m :

Mass, kg

Nu :

Nusselt number

P, p :

Pressure, kg/(m s2)

Pr :

Prandtl number

Q J :

Joule heating, W/m3

Re :

Reynolds number

Sh :

Sherwood number

Sc :

Schmidt number

SMD/SMR:

Sauter mean diameter/radius (m)

T :

Temperature, K

u, v, w :

Velocity component, m/s

α:

Volume fraction

μ0 :

Permeability in vacuum (4π × 10−7 H/m)

ϑp :

Melt fraction of the particle

c:

Cell

g:

Gas

ind:

Induce

l:

Liquid

p:

Particle

rel:

Relative

s:

Surface

v:

Vapor

References

  1. P. Fauchais, R. Etchart-Salas, C. Delbos, M. Tognonvi, V. Rat, J.F. Coudert, and T. Chartier, Suspension and Solution Plasma Spraying of Finely Structured Layers: Potential Application to SOFCs, J. Phys. D Appl. Phys., 2007, 40, p 2394-2406

    Article  CAS  Google Scholar 

  2. P. Fauchais, Understanding Plasma Spraying, J. Phys. D Appl. Phys., 2004, 37, p 86-108

    Article  Google Scholar 

  3. O. Marchand, P. Bertrand, J. Mougin, C. Comminges, M.P. Planche, and G. Bertrand, Characterization of Suspension Plasma-Sprayed Solid Oxide Fuel Cell Electrodes, Surf. Coat. Technol., 2010, 205, p 993-998

    Article  CAS  Google Scholar 

  4. E. Bouyer, G. Schiller, M. Muller, and R.H. Henne, Thermal Plasma Chemical Vapor Deposition of Si-Based Ceramic Coatings from Liquid Precursors, Plasma Chem. Plasma Process., 2001, 21, p 523-546

    Article  CAS  Google Scholar 

  5. O. Tingaud, A. Grimaud, A. Denoirjean, G. Montavon, V. Rat, J.F. Coudert, P. Fauchais, and T. Chartier, Suspension Plasma-Sprayed Alumina Coating Structures: Operating Parameters Versus Coating Architecture, J. Therm. Spray Technol., 2008, 17, p 662-670

    Article  CAS  Google Scholar 

  6. C. Delbos, J. Fazilleau, V. Rat, J.F. Coudert, P. Fauchais, and B. Pateyron, Phenomena Involved in Suspension Plasma Spraying Part 2: Zirconia Particle Treatment and Coating Formation, Plasma Chem. Plasma Process., 2006, 26, p 393-414

    Article  CAS  Google Scholar 

  7. P. Fauchais, R. Etchart-Salas, V. Rat, J.F. Coudert, N. Caron, and K. Wittmann-Teneze, Parameters Controlling Liquid Plasma Spraying: Solutions, Sols, or Suspensions, J. Therm. Spray Technol., 2008, 17, p 31-59

    Article  CAS  Google Scholar 

  8. E. Bouyer, F. Gitzhofer, and M.I. Boulos, Suspension Plasma Spraying for Hydroxyapatite Powder Preparation by RF Plasma, IEEE Trans. Plasma Sci., 1997, 25, p 1066-1072

    Article  CAS  Google Scholar 

  9. M. Shigeta and Watanabe. Takayuki, Multi-Component Co-Condensation Model of Ti-Based Boride/Silicide Nanoparticle Growth in Induction Thermal Plasmas, Thin Solid Film, 2007, 515, p 4217-4227

    Article  CAS  Google Scholar 

  10. W.J. Oleslk and S.E. Hobbs, Momodisperse Dried Microparticulate Injector: A New Tool for Study Fundamental Processes in Inductively Coupled Plasmas, Anal. Chem., 1994, 66, p 3371-3378

    Article  Google Scholar 

  11. P. Buchner, H. Schubert, J. Uhlenbusch, and M. Weiss, Evaporation of Zirconia Powders in a Thermal Radio-Frequency Plasma, J. Therm. Spray Technol., 2001, 10, p 666-672

    Article  CAS  Google Scholar 

  12. B.G. Ravi, A.S. Gandhi, X.Z. Guo, J. Margolies, and S. Sampath, Liquid Precursor Plasma Spraying of Functional Materials: A Case Study for Yttrium Aluminum Garnet (YAG), J. Therm. Spray Technol., 2008, 17, p 82-90

    Article  CAS  Google Scholar 

  13. F. Tarasi, M. Medraj, A. Dolatabadi, J. Oberste-Berghaus, and C. Moreau, Effective Parameters in Axial Injection Suspension Plasma Spray Process of Alumina-Zirconia Ceramics, J. Therm. Spray Technol., 2008, 17(5-6), p 685-691

    Article  CAS  Google Scholar 

  14. X.L. Sun, A.I.Y. Tok, S.L. Lim, F.Y.C. Boey, C.W. Kang, and H.W. Ng, Combustion-Aided Suspension Plasma Spraying of Y2O3 Nanoparticles: Synthesis and Modeling, J. Appl. Phys., 2008, 103, p p1-p13

    Google Scholar 

  15. X. Siwen, P. Proulx, and M.I. Boulos, Extended-Field Electromagnetic Model for Inductively Coupled Plasma, J. Phys. D Appl. Phys., 2001, 34, p p1897-p1906

    Article  Google Scholar 

  16. J.A. Horner, S.A. Lehn, and G.M. Hieftje, Computerized Simulation of Aerosol-Droplet Desolvation in an Inductively Coupled Plasma, Spectrochim. Acta B, 2002, 57, p 1025-1042

    Article  Google Scholar 

  17. X.L. Sun, A.I.Y. Tok, R. Huebner, and F.Y.C. Boey, Phase Transformation of Ultrafine Rare Earth Oxide Powders Synthesized by Radio Frequency Plasma Spraying, J. Eur. Ceram. Soc., 2007, 27, p p125-p130

    Article  Google Scholar 

  18. Y. Shan and J. Mostaghimi, Numerical Simulation of Aerosol Droplets Desolvation in a Radio Frequency Inductively Coupled Plasma, Spectrochim. Acta B, 2003, 58, p 1959-1977

    Article  Google Scholar 

  19. Y. Shan and Y. Hu, Heat and Mass Transfer Within an Evaporating Solution Droplet in a Plasma Jet, J. Therm. Spray Technol., 2012, 21(3-4), p 676-688

    Article  CAS  Google Scholar 

  20. S.V. Patankar, Numerical Fluid Flow and Heat Transfer, Hemisphere, New York, 1980

    Google Scholar 

  21. L.J. Qian, J.Z. Lin, and H.B. Xiong, Numerical Modeling in Radio Frequency Suspension Plasma Spray of Zirconia Powders, Plasma Chem. Plasma Process., 2010, 30, p 733-760

    Article  CAS  Google Scholar 

  22. L.J. Qian, J.Z. Lin, and H.B. Xiong, A Fitting Formula for Predicting Droplet Mean Diameter for Various Liquid in Effervescent Atomization Spray, J. Therm. Spray Technol., 2010, 19(3), p 586-601

    Article  Google Scholar 

  23. M. Cai, D.A. Haydar, A. Montaser, and Mostaghimi, Computer Simulation of Argon-Nitrogen and Argon-Oxygen Inductively Coupled Plasmas, J. Spectrochim. Acta B, 1997, 52, p 369-386

    Article  Google Scholar 

  24. Y.P. Wan, V. Prasad, G.X. Wang, S. Sampath, and J.R. Fincke, Model and Powder Particle Heating, Melting, Resolidification and Evaporation in Plasma Spraying Processes, J. Heat Transf., 1999, 121, p 691-699

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the supports received from the National Natural Science Foundation of China under grant Nos. 11002136 and 11132008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijuan Qian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, L., Lin, J. & Yu, M. Parametric Study on Suspension Behavior in an Inductively Coupled Plasma. J Therm Spray Tech 22, 1024–1034 (2013). https://doi.org/10.1007/s11666-013-9943-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-013-9943-6

Keywords

Navigation